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Robust Solution of Systems of Equations in Geostatistics 

John G. Manchuk and Clayton V. Deutsch 
 

Many geostatistical modeling algorithms involve solving systems of linear equations.  One necessary 
property is positive definiteness; however, due to various reasons this is not always the guaranteed.  In 
practice, systems may be indefinite or ill conditioned yielding unacceptable results.  Two correction 
schemes are developed, where the first is automatic and uses a standard correction scheme for indefinite 
systems and regularized approximation for ill conditioned systems.  The second is more user intensive 
allowing a more in-depth manipulation of a problematic matrix.  Its correction scheme is based on the 
eigenvalue decomposition.  Regression is used to correct any negative eigenvalues resulting from indefinite 
systems. 

Introduction 

Linear systems of equations encountered in geostatistics are derived in two main contexts: 1 – kriging-like 
systems in spatial settings, and 2 – multivariate systems.  The first context involves systems that are 
encountered during the estimation or simulation of a geologic variable.  These processes often involve tens 
of thousands to millions of systems.  For traditional modeling techniques such as simple and ordinary 
kriging on regular grids, all systems are positive definite and usually yield acceptable results.  An 
unacceptable result is one yielding a negative estimation variance or an extreme estimate beyond the range 
of a particular variable.  Both problems occur from poorly conditioned or indefinite systems.  With the 
advent of more complex modeling algorithms such as those with non-stationary input parameters (Boisvert, 
Manchuk, and Deutsch, 2007); poorly conditioned and indefinite systems are becoming more prevalent. 

The second context involves multivariate matrices relating several geologic variables.  They are usually 
encountered only once over a particular geologic domain.  Bayesian updating (Deutsch and Zanon, 2007) is 
a good example: a correlation matrix is used to merge the information content of several variables.  
Correlations are calculated from sample data, which do not always lead to a well conditioned matrix.  
Missing samples, assay error, and redundant variables can cause indefinite systems.  By construction, 
correlation matrices must be positive definite.  This and well conditioned matrices ensure the intended 
results are obtained by the Bayesian updating method. 

In both cases, systems must be corrected to be positive definite and well conditioned, thus eliminating the 
occurrence of negative variances, extreme solutions, and unacceptable estimates.  Two corrections schemes 
are developed: one must be fast and automatic for the case were thousands of systems are encountered and 
another more sophisticated correction for systems that are only corrected once.  Method one involves 
Householder reduction for eigenvalue calculations (Golub and Van Loan, 1989) and Tikhonov 
regularization (Boyd and Vandenberghe, 2004), while method two involves QR decomposition (Golub and 
Van Loan, 1989) to access the whole Eigen system for use in subsequent corrections. 

Background 

Basic linear systems encountered in geostatistics are calculated from a positive definite variogram function 
and a pair-wise distance matrix resulting in (1), where Cij is the covariance between two spatial data 
locations xi and xj, ci is the covariance between an estimate and xi, and λi is the solution weight applied to 
location xi.  For the first correction scheme, the system is merged (2).  Correlation matrices involved in the 
second method are typically merged by construction, where all components in (2) are replaced with ρij and 
K with Ρ.  For Gaussian variables or standardized systems, the variance in (2), σ2, is always equal to one.  
In both contexts, an indefinite system can lead to negative estimation variance.  The quadratic term, λTCλ, 
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in the equation for estimation variance (3) is not guaranteed to be positive, leading to the possibility of a 
negative variance. 
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Positive definite, but ill conditioned systems pose another problem.  The condition number of a matrix is a 
sensitivity bound for the solution.  For large condition numbers, Cij or ρij is ill conditioned and the relative 
error in λ may be much larger than the relative error in c, leading to extreme solution weights and large λ
.  Given these results, the characteristics of a system of equations used to determine if a more robust 
solution is required are a negative estimation variance or one or more extreme weights.  The later is more 
applicable to method 1, where an extreme weight is defined by (4) and α is a constant. 

 i icλ α>  (4) 

Method 1 

When thousands of systems are encountered in an estimation or simulation algorithm a fully automatic and 
fast correction scheme is required.  It is impossible to determine a priori when ill conditioned or indefinite 
systems will occur: they must be detected on the fly.  Detection is based on the occurrence of either a 
negative estimation variance or extreme weights from (3) and (4).  For well conditioned systems, the only 
loss in performance is in checking the results, which is computationally negligible.  This is reinforced by 
Table 1 where two systems are solved 105 times using a symmetric Gauss elimination solver.  In most 
cases, the estimation variance is a required quantity. 

Table 1: Time comparison for solving and checking systems 

System size Time(s), 
without check 

Time(s) 
with weight check 

Time(s) with weight 
and variance checks % increase 

10×10 0.871 0.902 1.137 3.56 / 30.54 
30×30 13.59 13.59 15.13 0.00 / 11.33 

Correcting systems in this setting is a two stage process: 1 – adjust indefinite systems to be positive definite 
and 2 – mitigate the occurrence of extreme weights.  Both stages are only necessary when a negative 
variance and extreme weights occur simultaneously.  For indefinite systems, the most straightforward 
correction is inflating the diagonal elements.  Eigenvalue decomposition of the system in (2) is used to 
determine how much the diagonal should be increased to guarantee a positive definite result.  The 
correction is given by (5) where ϖk, k=1,…,N+1 denotes the eigenvalues, ε is a small number, I is the 
identity matrix, and K is re-standardized so the diagonals maintain a value of σ2. 
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Eigenvalues are calculated using Householder’s method, reducing K to a tridiagonal matrix, and QL 
decomposition.  An additional (N+1)3/3+30(N+1)2 computations are required (Press et al, 1992).  For the 
10×10 system from Table 1, the initial variance was -0.519 and after applying (5) with ε equal to 10% of 
the minimum eigenvalue, the variance was 0.037. 
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When extreme weights are detected, a convex vector optimization technique called regularized 

approximation can be used (Boyd and Vandenberghe, 2004).  An approximate solution vector λ is found 

so that both the residuals C cλ −  and the magnitude of λ are minimized (6). 

 ( )minimize ,C cλ λ−  (6) 

Tikhonov regularization is applied to this problem as it has an analytical solution.  The system of equations 
in (7) is solved rather than that in (1) for some regularization term δ.  The additional computations in this 
case are a matrix-matrix product and a matrix-vector product.  This technique is applied to the 10×10 
system already corrected for the negative variance and for δ ranging from zero to one (Figure 1).  This 
study shows how the method stabilizes the weights by controlling their norm.  The estimation variance 
increases with δ since the solution is suboptimal for (1): i.e. the residual error increases with δ.  The sum of 
the weights also remains nearly constant. 

 ( )T TC C I C cδ λ+ =  (7) 

Optimization to determine a δ value based on some objective function would be too time consuming for the 
intended purpose of this solver.  Instead a single value is to be chosen and applied to all systems for a 
particular application.  Based on the 10×10 system studied in Figure 1, δ = 0.5 would be adequate.  The 
residual error is small and the weights and weight norm both stabilize quickly.  The final estimation 
variance using this δ is 0.204.  In practice, an acceptable δ may be chosen experimentally: slowly increase 
δ for a modeling application until unacceptable results, such as extreme estimates, are non-existent. 

Both of the above cases require the system be solved a second time.  Solving the same two systems as in 
Table 1 with these corrections shows an increase in processing time (Table 2), but not to an unacceptable 
level.  For the values of N shown, time increased by 10 fold.  In the limiting case for very large N, the 
process is roughly 3.333 times more complex.  Note that these increases are only for corrected matrices.  
For most estimation and simulation applications, the number of poorly conditioned and indefinite systems 
encountered will likely be small relative to the number of spatial locations being explored. 

Table 2: Time comparison for solving and correcting systems 

System size 
Time(s), 
without 

corrections 

Time(s) 
with regularization 

correction 

Time(s) with both 
corrections % increase 

10×10 0.875 3.750 9.250 329 / 957 
30×30 13.53 72.64 133.03 437 / 883 

 

Method 2 

In multivariate applications, such as Bayesian updating, a system of equations is encountered very few 
times and a more involved correction scheme can be developed.  As an example, the correlation matrix for 
a set of geologic variables is commonly required.  Systems of equations are later derived from blocks of the 
correlation matrix.  Due to the quality and extent of sample data it is possible that these matrices are 
indefinite, which is invalid by construction. 

The dimension of the systems in this context is small, never exceeding the number of variables.  Standard 
eigenvalue decomposition techniques can be applied without being concerned with processing time.  QR 
decomposition will be used to access the eigenvalues and eigenvectors of a correlation matrix, Ρ, resulting 
in (8), where Q is a matrix of eigenvectors and D is a diagonal matrix of eigenvalues.  (8) contains the 
simplification that QT=Q-1 due to the symmetry of Ρ. 
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Figure 1: Tikhonov regularization applied to 10×10 system 

 

 TQDQΡ =  (8) 

The correction scheme developed here involves the four steps given below.  An indefinite correlation 
matrix involving 37 variables will be used as an example. 

1. Eigenvalue decomposition 
2. Eigenvalue regression and prediction 
3. Reverse calculation of Ρ 
4. Standardization of Ρ 

Decomposition has already been explained.  It is assumed the eigenvalues are sorted from smallest to 
largest value along the diagonal of D in step 2.  Letting q=diag(Q), the regression problem is to fit q as a 
function of eigenvalue number.  Since Ρ is theoretically positive definite, regression is transformed to log 
space and negative eigenvalues are omitted from the problem.  Results using a third degree polynomial fit 
are given in Figure 2. 

 
Figure 2: Initial eigenvalues, regression curve, and corrected eigenvalues 
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In this example, there are M = 8 negative eigenvalues.  These M values are replaced by their predicted 
values given by the polynomial fit.  Updated values are stored in a diagonal matrix D , which replaces D in 
(8) for calculating the corrected correlation matrix Ρ .  The advantage to this method, over setting the first 
M eigenvalues to a small number, is rank preservation of all eigenvalues. 

After calculating Ρ from the adjusted eigenvalues, there is no guarantee the diagonal entries will equal 1.  
A standardization procedure is used in step 4 to accommodate this: for the kth entry, kkΡ , all the elements 

of row k and column k are scaled by 
1
2

kkΡ .  The standardized correlation matrix is denoted Ρ and is 
calculated using (9).  Eigenvalues of P are shown in Figure 2, right.  All eigenvalues are positive with a 
minimum of 7.32×10-7 and a maximum of 7.63.  The initial and final correlation matrices and their absolute 
difference are shown in Figure 3.  
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Very few correlation coefficients undergo a large change through the correction process.  Correlations with 
the largest change are most influential in causing the indefinite matrix.  An influence curve can be analyzed 
to choose a significant absolute change for further analysis (Figure 3, bottom right).  For a series of change 
values, the number of variables above can be calculated.  In this example, a value of 0.15 might be selected 
due to the rapid change in slope of the curve.  Those variables with a change greater than 0.15 can be 
highlighted and further analyzed (Figure 4) 

Conclusion 

Two main categories of systems of linear equations encountered in geostatistics may require adjustments to 
ensure acceptable solutions.  In certain applications, thousands of systems are encountered and a fully 
automatic correction scheme has been developed to handle indefinite and ill conditioned systems.  The 
main advantage of the proposed correction is its non-iterative solution.  Indefiniteness or negative variance 
is corrected in one analytic step through calculating the minimum eigenvalue and extreme weights are 
corrected by regularization with a fixed parameter.  Some fine tuning of the regularization parameter may 
be the only necessary adjustment.  Increase in execution time is the price to ensure well conditioned 
solutions, although the increase is not detrimental.  In many cases, systems will not need any correction.  
Calculation of eigenvalues is the most expensive component of the solver and methods for approximating 
only the minimum eigenvalue (Watkins, 2007) would improve performance. 

Other applications may encounter very few ill conditioned matrices and a more elaborate user intensive 
correction process can be implemented.  In these cases, users fit the eigenvalue curve to ensure positive 
definiteness, then recalculate the corrected matrix.  Problematic variables can be identified through the 
correction and further analysis may be carried out, for example taking a closer look at cross plots between 
the problematic variables for outliers.  It is the author’s opinion that in nearly all cases, few variables will 
be responsible for an indefinite (correlation) matrix. 
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Figure 3: Initial and final correlation matrices and their absolute difference 

 

 

 
Figure 4: Most influential variables causing indefiniteness 


