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New updated BlockSIS program with MDE  
Yupeng Li  and Clayton V. Deutsch 

 
Sequential indicator simulation (SIS) remains a reasonable approach for stochastic simulation of 
categorical variable such as facies or geological units.  There are a number of techniques implementing 
SIS in practice varying in how they integrate the secondary data.  The original BlockSIS program collected 
nine of them.  In this new updated program, the multivariate probability distribution estimation (MDE) is 
added.  The algorithm and program parameters are presented out in this paper.  

Introduction 
Indicator techniques are commonly used for categorical variables such as facies and rock types before other 
continues properties. Different indicator variograms are used for each rock type.  Secondary data are easily 
coded as soft indicator data for integration with a form of cokriging or non-stationary kriging.  Indicator 
kriging (IK) and sequential indicator simulation (SIS) are widely used.  IK estimates the probability of each 
given the available data.  SIS samples the conditional probabilities in a Monte Carlo simulation fashion.  IK 
and SIS are robust and provide a straightforward way to transfer uncertainty in categories through to the 
geostatistical models.  The required variogram models are easy to infer from hard data.  A number of SIS 
variations have evolved over years.  Most of the variations related to the use of soft secondary data arising 
from geological interpretation or geophysical measurements.  
 
In this paper, a new conditioning probability distribution procedure is introduced based on transition 
probability matrices (TPM).  The multivariate probability distribution estimation (MDE) process is inferred 
from the TPM of the conditioning data configuration.  The related theories are illustrated earlier in this 
report.  This paper focuses on the program implementation. 
 
The BlockSIS code published previously in CCG is open and permits easy integration of new algorithm 
developments.  The program has been modified to calculate estimation results as well as simulated 
realizations.  The new MDE method has also been integrated in the program. 

Transition Probability Matrix Construction 
 
Spatial relationships between the conditioning data may be characterized by transition probability matrices 
at different lag distances.  Assuming the geological discrete data such as lithological type is a Markov chain 
along the vertical profile, which means the lithological type at location ܺ௧ will only depend upon the one at 
the preceding locationܺ௧ିଵ.  The possible values of Xt will form a countable set S(݇௜) (݇௜ ൌ 1, … , ,ܭ ݅ ൑ ݉) 
called the state space of the chain, where ݇௜ denote the mutually exclusive, exhaustively defined states of a 
stochastic process.  If a sequence of states has the Markov property, then every future state is conditionally 
independent of every prior state.  The changes of states are called transitions.  The conditioning probability 
of a state 1 1( )n n n nP X k X k+ += =  is called the transition probability.  The transition probability of a finite state 

space of Sሺ݇௜ሻ (݇௜ ൌ 1, … , ,ܭ ݅ ൑ ݉) going from state ݇௜  to state ௝݇ in n steps will form a ݉ כ ݉ matrix 
( )
, ( , )n

i jT x h n=  with the ith row and jth column element of , 0( )h n
i j n j it P X k X k= = = = , called a transition 

probability matrix (TPM). 
 
Assuming the lithological types at location 

tX  in the vertical profile of a well will only depend upon the 

lithological type at the preceding location
1tX −
, it is recognized as a Markov chain process.  The TPM at 

different observe interval lags are built from observations spaced equally along a vertical profile.  Suppose 
the vertical profile is H which divided into n equal segments using an equal segment.  The state space in 
this Markov chain is the facies category set ݇௜ሺ݇௜ ൌ 1, … , ,ܭ ݅ ൑ ݉ሻ.  Then, in each segment will define a 
state of a Markov chain and the transition probability of the whole profile will form a TPM. 
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For example, the total observed number of state iK  followed the state jK  giving the observation interval 

h=n is denoted as ݊௜௝, while in  is the counted total number of  ݇௜ When the interval is 1, the transition 

probability from state iK to state jK will be denoted as:  
1

, , /h
i j i j it n n= =  

The transition probability from k1 to k1, k2, k3,…,k୫ is given by 1
1 ,
h

jt = (j=1,2,…,m ) in the first row and 

so on  for the second line and others, then the matrix will be: 
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Generally, from the account approach, the elements of the TPM (∀ h ) will be: 
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∑
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Where:     , ( , )i jt x h is the transition probability of state Ki to state Kj 

                ,i jn is the number of state Ki followed by Kj after h steps; 

                in   is the row sum of the ,i jn  , ,i i j
j

n n=∑ ; 

                ,
,

i j
i j

n∑  is the whole sum of the tally matrix entries; 

                , ( , )i jp x h is the joint probability of two state   K ;i jK and  

                ( , )ip x h is the univariate marginal probability of state  iK   

 
The TPM has the following properties: (1) Its elements are non-negative, ,0 1i jt≤ ≤ ; and (2) The 

elements of each row sum up to one , 
,

1
( , ) 1

m

i j
j

t x h
=

=∑ ;  Generally,  

,

{  exit at (x+h) AND  exit at x} 
( , ) { exit at (x+h) exit at x}

( exit at x)
j i

i j j i
i

p k k
t x h p k k

p k
= =  

When the process is stationary or homogenous, the transition probability is independent of position x, the 
transition probability , ( )i jt h and the bivariate joint probability ( ; , )i jp k kh will depend only on the 

intervals vectors. From the transition probability , ( , )i jt x h , the bivariate joint probability 

( ; , ) ( ; , ; , 1,..., )i j i jp k k k k i j K∀ =h h can be calculated as:  

,( , , ) { exit at (x+h) AND exit at x}= ( )* ( )i j i j i j ip h k k p k k t h p h=  
That’s to say, there also exists a bivariate joint probability matrix for a particular lag h which is fully 
defined by its relatively transition probabilities matrix and the univariate marginal probability. 
 
In the MDE approach, the spatial relationship between the data and unsampled location are characterized 
by the transition probability.  It is related to the variogram model in traditional geostatistics.  A GSLIB 
style program calctp.for will perform TPM construction.  Figure 1 is the parameter file for calctp.for.  In 
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line 1, it is the totally category number in the vertical profile. The line 2 is the category type in the data file. 
Line 3 is the input data file name. Line 4 is the column number for well ID, depth and category data. In 
line 5, the first data is for the minimum count interval along the depth: xlag, the second number is the 
maximum observer lag nlag. These two parameters are very important for building the reasonable 
transition probability matrices.  When the maximum observation lag is large enough, the bivariate joint 
probability will be equally to their independent case. P୧,୨ሺx, hሻ ൌ p୧ כ p୨. Line 6,7,8 and 9 are all the output 
files name including the bivariate joint probability output file for MDE, bivariate joint plotting output file, 
transition probability plot file and the debug file during the calculation. The plot files are all in variogram 
model format and can be plot using gslib file vargplt. Figure 2 is one example of the transition probability 
matrices plotting. 

Vertical to Horizontal TPM transform 
Usually, in the vertical profile of the well data or outcrop, the data are sampled with a high density which 
can build the transition probability matrices easily. While for estimation and simulation, the grid needed are 
always located in a 3D space. In sedimentology, it is pointed out that in a simple sedimentary cycle, the 
sedimentation in a vertical sequence of facies will mirrors the original lateral distribution of sedimentation. 
“Sedimentary environments that started out side-by-side will end up overlapping one another over time due 
to transgressions and regressions”. This rule is called Walther’s law and named after a German geologist. 
Walther's law provided a clue to related lateral facies changes to vertical changes (vertical succession). In 
the program parameter file will ask three parameters named as astio1, astio2, astio3 in the MDE approach. 
The first two is for horizontal direction, along the main and minor difference direction. The last one is the 
vertical ratio. The details of this point are illustrated in paper 103 of this report. 

MDE based on bivariate joint probability 
After the bivariate joint probabilities are inferred, the main concern is the construction of a multivariate 
joint distribution given these sets of bivariate joint probabilities. In general, assume in the domain there are 
n locations ( 1  ... nu u ), each of the n location has K categories. That is to say, the n  random variables 

will form a multivariate distribution function(pdf) 1( ,..., )MV np u u , which is defined as below and 
represents the probability of a specific configuration of categories  ݇௜ሺ݇௜ ൌ 1, … , ,ܭ ݅ ൑ ݉ሻ  existing at  
locations 1  ... nu u . 

1 2 1 1 2 2( , ,..., ) ( , ,..., ); 1,2,...,MV n n n iP u u u prob u k u k u k k K= ∈ ∈ ∈ =  
In this distribution, there are totally nK  possible values. Each of these values occurs with a given 
frequency which is identified with an index that is: 

1

1

1 ( 1)*
N

n
mv n

n

I u K −

=

= + −∑  

Where: 1, 2,..., ;n
mvI K= nu  is the code of the ܐܜܖ location in the data configuration that identifies its 

categories;  K is the total number of the categories.  Given a known multivariate probability distribution

1( ,..., )MV np u u , the univariate marginal probability ( , ')jp u k  for any category kᇱ  at any location 

( 1,..., )ju j n=  calculated from multivariate probability will be:  

1 2

1
1 1 ' 1

( , ') ... ... ( ,..., )
j n

K K K

j MV n
k k k k k

p u k P u u
= = = =

= ∑∑ ∑ ∑  

Where:   , ' 1,2,.... ; , 1,...ik k K i j n= = .  Because the univariate proportion will be locked when bivariate 
joint probability are satisfied. After the bivariate probability obtained from the vertical profile, there are 
already embedded another univariate marginal probability *( , ')jp u k . If these two univariate marginal 

probability ( , ')jp u k  and *( , ')jp u k are characterize the same multivariate probability, they should be 
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consistent to each other. That is to say, the univariate marginal of categories ( ; ')aimp kh calculated from the 
multivariate probability should be consistent with those calculated from the bivariate joint distribution

( ; ')calp kh .  

Scaling the bivariate joint probability with the univariate marginal probabilities is needed here. An iterative 
modification process is adopted. The process of bivariate joint probability modification with univariate 
marginal probability is: 

 Step 1: calculate the univariate marginal probability ( ; ')calp kh from the bivariate joint probability 

*

'' 1
( ; ') ( ; ', '')

K

cal aim
k

p k p k k
=

=∑h h ; 

 Step 2:  calculate the modification factors univF for all the bivariate joint probability;  

 

( ; ')
( ; ')

aim
univ

cal

p kF
p k

=
h
h

  Step 3: modify the bivariate joint probability to get a new bivariate joint probability;  
 

 Step 4: check whether it is consistent or not, if not, use this new bivariate joint probability as input 
of  step1 and continue another modification; if yes, stop; the final bivariate joint probability 
denoted as: ( ; ', '')aimp k kh ; 

 
For the specification location, the univariate proportion maybe different with that in bivariate joint 
probability. It will be an inconstant problem. This scaling process also provides a chance to integrate 
secondary information into the algorithm. After the correction, the new bivariate marginal carry all the two-
point spatial information. 
 
Given a known multivariate probability distribution 1( ,..., )MV np u u , the bivariate joint probability 
calculated from this distribution will be: 

1 2
0 1 1 2

0 1
1 1 ' '' 1

( , , ', '') ... ... ... ( , ,..., ) (h; ', '')
j j n

K K K

cal j j MV n cal
k k k k k k k

p u u k k P u u u p k k
= = = = =

= =∑∑ ∑ ∑ ∑  

Where:  1 2 1 2, ', '' 1, 2,.... ; , 0,1,..... ; ; 0,1,...ik k k K j j n j j i n= = ≠ =  
According the conditioning data configuration, the bivariate joint probability transformed from the vertical 

profile and modified by the univariate marginal probability is donated as ( ; ', '')aimp k kh ; those two 

bivariate joint probability distributions ( (h; ', '')calp k k and  (h; ', '')aimp k k )should be consistent to each 

other. This will impose 2( *( 1)* )n n K− constraints on the multivariate probability distribution.  

So now, the MDE iteration scheme based on these bivariate joint probability constraints will be:  

 Step 1: calculate the initial multivariate probability distribution. It assumes that the variables at 
each location are independent. The multivariate probability distribution will be: 

 

1 1 1
1

( ,..., ) ( ,..., 1,..., )
j

n

MV n n k n
j

p k k p k k K
=

= = = =∏u u

  Step 2:  calculate the bivariate joint probability from the initial multivariate probability, denoted 

as : ( ; ', '')calp k kh ; 
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 Step 3:  based on the conditioning data configuration, aiming bivariate joint probability 

transformed from the vertical profile is donated as  ( ; ', '')aimp k kh , then the modification 

factor bivF for the initial multivariate probability will be:  

( ; ', '')
( ; ', '')

aim
biv

cal

p k kF
p k k

=
h
h  

 Step 4: In a randomly modification path, modify the initial multivariate probability distribution by 
all the bivariate joint probability between any two locations. After standardization a new 
multivariate probability *

0 0 1 1( , ,..., )MV n np k k k= = =u u u will obtained. 
 Step 5: Check whether all the bivariate joint probabilities are reproduced or not. If not, the 

distribution of *
0 0 1 1( , ,..., )MV n np k k k= = =u u u  will act as the initial multivariate probability 

distribution and go to step 2 and do the next modification.  If yes, the iteration will stop. 

After the multivariate probability distribution is obtained; the conditioning probability for the unsampled 
location can be calculated according the Bayes’ law: 

0 1 2( , ,....., )np u u u u = 0 1

1

( , ,.., )
( ,.., )

MV n

MV n

p u u u
p u u

= 0

0
, 1

( , )
  

( , )
i j

MV j j
K

MV i j j
k k

P u u k

P u k u k
=

=

= =∑
 

                                             
where: 0 1, , ..., 1,..., ; , 1,...,nu u u K i j n= =  

The denominator will be sum of several multivariate probabilities that specified by the conditioning data 
category values; the nominator is the specific category’s multivariate probability at the unsampled location.   

While in iteration, the calculated bivariate joint probabilities are not exactly the same as the aiming 
bivariate joint probability although they are very close to each other. So, in the program, after certain times 
iteration, it will calculate the maximum conditioning probability difference max( ( ), 1,..., )diffP k k K=  
from the iterated multivariate probability distribution and decide stop iteration or not. If the maximum 
conditioning probability difference is less than 0.005 in three continuous iterations, the program will stop 
iteration. The automatic stop scheme also saves CPU time greatly.  

MDE estimation and simulation algorithm  
For estimation and simulation process using MDE, it is the same as the sequential simulation in traditional 
geostatistics, the estimation is based on hard data and the simulation will be a sequential style as shown in 
figure 3. The main steps are: 
 

 Reading the data and bivariate joint probability matrix; 
 Pick up a path (orderly path for estimation and randomly path for simulation) visiting all locations; 
 Search the conditioning data (and the previous simulated nodes if for simulation); 
 Calculated the distance and transform to vertical direction using the anisotropy ratio and setting up 

the bivariate joint probability matrix; 
 Correct the bivariate joint probability matrix by the univariate probability at this unsampled 

location;  
 Iterate from the initial multivariate probability distribution to satisfy the constraints of the 

bivariate joint probability to get the multivariate probability distribution; 
 Calculate the conditioning probability based on the conditioning data category and the multivariate 

probability distribution using Bayesian law; 
 If estimation, output the conditioning probability, if simulation, using Monte Carlo draw a 

category value from the conditioning probability distribution; 
 Go to the next node until all the nodes are estimated (simulated); 
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Program 
The new updated program follows standard GSLIB styles. Some small modifications are done on the 
original codes making it possible to do estimation and simulation using this single program. Three source 
files are required: BlockSIS.for, BlockSISsubs.for and mdesub.for. The parameter file for the new 
BlockSIS is shown in Figure 4. 

The kriging option is specified on line 1. Totally, there are 10 options. The isimtype 9 is MDE approach. In 
the original paper, suggestions on choosing a right option from 9 kinds of simulation algorithms are very 
helpful. Now, the MDE approach is ready for compare the results with other algorithm. From line 2 to line 
8 is the same as the original program. If isimtype is 9, the MDE approach will ask for a file providing the 
bivariate joint probability calculated from the vertical profile of well data. The line 9 is asking for that file’s 
name. Line 10 is the totally lag number nlag used in the transition probability construction. It is the same 
number as named “maximum observer lag” nlag in program calctp. Line 11 are three vertical-horizontal 
transformation anisotropy ratio for x,y and z direction separately. In line 12, first number is the maximum 
iteration time during MDE process, the second number is the option for using auto-stop or not. If it is 1, 
during the iteration, the program will check after certain times iteration to see whether the conditioning 
probability is stable or not. If the maximum change for totally K categories during three times is less than 
0.005, the program will stop iteration. Line 21 is the number of realization, 0 means the program will do 
estimation, if not 0, the number will be the simulation realization number. Line 26 is the maximum original 
data for each kriging, line 27 is the maximum previous nodes used in each kriging. While in MDE 
approach so far, because the CPU time of iteration, the program will make sure the sum of those two 
numbers are less than 7, the maximum number will be 11. Line 28 is specifies whether the data are 
assigned to the grid node location or not. In program, it is enforced that no data are assigned to grid node 
location in kriging estimation and in MDE estimation and simulation. The left lines are the same 
parameters as original BlockSIS program.  

Estimation and simulation example 
A small 3-category example is used for illustration.  The 3 categories cases are representative test. In most 
cases, the categories in reservoir can separated into 3 categories according their qualities: non-net, media 
and net sand.  The data set location map is shown in upper left of Figure 5. The variogram modes for those 
three categories are also shown in upper right of Figure 5.  The transition probability matrix for those three 
categories comes from a true well data.  The totally count number is 40, and then the transition probability 
matrices is shown in bottom of Figure 5.  The research grid is 10 by 10 grid nodes (100 total). 

As already stated out before, the anisotropy ratio will affect the MDE results greatly. In figure 6, different 
estimation results using different anisotropy ratio are presented. When a small ratio used, less information 
are provided for horizontal estimation from their vertical transition probability. When the ratio is small 
enough, the bivariate joint probability of any two categories in the horizontally will be

( ; ', '') ( ; ') ( ; '')p k k p k p k= ∗h h h .  

The simulation results using MDE approach and the traditional sisim results are shown in figure 7. The 
light clean option is used.  

Algorithm comparison 
In Figure 6 and Figure 7, the MDE results and the traditional IK and SIS results are put together, which 
formed a visual comparison between different algorithm’s results. A well established comparison approach 
is those different algorithms’ cross validation results comparison. In cross validation, it is to compare 
model results to true values which are held back from the analysis. True data are left out one at a time and 
re-estimated from the surrounding data.  For category variable, one kind of quantity criteria is presented on 
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Figure 8.  The true probabilities for categorical variables at one location are always 0 or 1; the facies is 
present or not.  Estimated probabilities are between 0 and 1.  Ideally, when the estimated probability of a 
facies is high, then the location will likely be that facies; when the estimated probability of a facies is lower, 
then the location should not be that facies.  .  The b statistic measures the difference between these 
probabilities.  The b value should be as close to 1 as possible. 

From the small test cast, the calculation results are shown in chart 1. From the comparison, the MDE 
technique has a better estimation for those three variables. 

Chart 1 the comparison of IK and MDE estimation results 

  

In another words, the MDE technique requires more CPU time because of the huge multivariate probability 
distribution dimension.  Consider a data configuration with 10 locations and in each location there are 3 
categories, the total number of multivariate probability distribution will be 59,047.  Bivariate joint 
probability in this case will be 810; one iteration need to update 59,047 values with these 810 constraints.  
A realization with 100 grids with 3 categories in estimation needs 156s to finish (Inter Xero CPU 3.19 Hz). 
While a realization with 2,500 grids; the estimation time will be 11 minutes. In the future, improvement the 
CPU time to a practical amount of time will be one of the efforts. 

Conclusion and future work 
This new multivariate probability distribution estimation technique is based on transition probability matrix, 
which provides the spatial relationships of the bivariate joint probability in the conditioning data. It is non-
kriging. There are no order relationship problems in this approach. It opens a new research area for 
categorical data simulation.  As stated in previous session of this paper, integrate the secondary information 
and improve the CPU calculation time will be the future research.  
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category 
technique IK MDE IK MDE IK MDE

exist 0.6488 0.8351 0.5629 0.8806 0.5961 0.9532
non‐exist 0.1756 0.0825 0.2236 0.0597 0.2071 0.0733

b 0.4732 0.7526 0.3393 0.8209 0.389 0.8799

1 2 3
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Figure 1 parameter file for program calctp 

 
 
 

 
Figure 2 transition probability matrices build from the vertical profile of a well data 
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Figure 3 the workflow of the MDE based on TPM in the new BlockSIS program 
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Figure 4 the parameter file for new BlockSIS program 

 

Figure 5 the test data location map, variogram models and transition probability matrices for the test case 
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Figure 6 estimation results using different approach 

 

Figure 7 simulation results using different approach 
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Figure 8 Illustration of cross validation results for categorical variables (Clayton 2008) 


