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Optimization of the Super Block Search for Scattered Data 
 

S. Lyster and C.V. Deutsch 

Searching for nearby data to condition local estimates and models of uncertainty is required by many 
geostatistical algorithms.  Fast searching is important for manageable CPU time.  A spiral search is used 
for data on a regular grid, but we are often required to find data that are not regularly sampled.  The super 
block search is well established for scattered data.  It is a type of search tree.  A tuned super block search 
is considered to be the fastest approach to locate nearby scattered data.  This paper addresses the issue of 
optimizing the parameters in the super block search.  The use of optimized parameters leads to an 
improvement over default parameters taken in most geostatistical software. 

Introduction 
Kriging and simulation are widely accepted and applied techniques in spatial prediction.  At times, there is 
a need to create large 3-D models and computer time becomes an issue.  The computer intensive operations 
are (1) searching for relevant data, (2) constructing the kriging system of equations, and (3) solving the 
kriging equations.  Disk access and other overhead may also be concerns.  The focus of this paper is in the 
first operation – searching for relevant data. 

Most kriging and simulation algorithms consider a limited number of nearby conditioning data.  The main 
reason for this is to improve speed.  The CPU time required to solve a kriging system increases as the 
number of data cubed, e.g., doubling the number of data leads to an eightfold increase in CPU time.  
Furthermore, adopting a global search neighborhood would require knowledge of the covariance for the 
largest separation distance between the data.  The covariance is typically poorly known for distances 
beyond one-half or one-third of the field size.  A local search neighborhood does not call for covariance 
values outside the search ellipsoid. 

Another reason for a limited search neighborhood is to reduce the consequence of choosing a global search.  
A local search allows local rescaling of the mean when using ordinary kriging and other techniques.  All of 
the data may have been pooled together to establish a reliable histogram and variogram; however, at the 
time of estimation it is often better to relax the decision of stationarity locally and use only nearby data. 

A number of constraints are used to establish the nearby data that should be considered: (1) only those data 
falling within a search ellipsoid centered at the location being estimated are considered, (2) the allowable 
data may be further restricted by a specified maximum, and (3) a maximum per drillhole/well or maximum 
number per octant may also be imposed to ensure reasonable data availability surrounding the location 
being considered.  The closest data are retained.  Closeness is measured by the anisotropic Euclidean 
distance.  In certain cases, the variogram distance is used for searching.  At times the number of data 
available within a particular search specification is used to assign a measure of confidence in the results. 

The super block search used by the GSLIB set of programs automatically sets the number of super blocks 
as the number of grid cells in a dimension divided by two, to a maximum of 50 super blocks in any one 
dimension. This is a fast and easy method for setting the search parameters but is probably not optimal for 
CPU efficiency. Guidelines for better selection of the number of super blocks are proposed here. 

Super Block Search 
The super block search is arguably the most efficient search for scattered data.  A number of search trees 
and other algorithms have been implemented for spatial searching, but it is difficult to improve on the 
speed of the super block search.  The super block requires some preprocessing of the data, but that 
improves the overall speed when considering many locations in the domain being estimated/simulated.  The 
central ideal of the super block search is that data are partitioned into a grid network superimposed on the 
field being considered.  When estimating any one location, it is then possible to limit the search to those 
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data falling in nearby super blocks.  This search has been adopted for non-gridded data in most kriging and 
simulation programs. 

The data are classified and ordered according to a regular network of grid blocks; see Journel and 
Huijbregts, 1978, page 361.  This grid network is not the same as the grid network of points/blocks being 
estimated or simulated.  Typically, the size of the search network is much larger than the final estimation or 
simulation grid node spacing.  When estimating any one point, only those data within nearby super blocks 
are checked.  A large number of data are thus quickly eliminated because they have been classified in super 
blocks beyond the search limits.  This is illustrated in 2D on Figure 1, where a super block grid network has 
been established over an area containing scattered data. 

The key parameters in establishing the super block search is the number of blocks in X, Y, and Z: nsbX, 
nsbY and nsbZ.  The user specifies these parameters or they accept the default settings.  The values are 
specified in the GSLIB code, but few people modify or optimize these parameters.  The aim of this paper is 
to come up with a response surface that gives the optimum numbers based on the number of data and 
search distance. 

The illustration to the right on Figure 1 shows the area of interest when estimating a point anywhere within 
the dark gray super block, only those data within the dark black line need be considered.  Note that all 
search resolution less than the size of a super block has been lost.  Also note that the light gray region is 
defined by the search ellipse (circle in this case) with its center translated to every node to be estimated 
within the dark gray super block.  All super blocks intersected by the light gray region must be considered 
to ensure that all nearby data are considered for estimation of any node within the central dark gray super 
block. 

The first task is to build a template of super blocks, centered at the super block that contains the node being 
estimated.  For example, the template is the relative locations of all 21 blocks enclosed by the dark line on 
Figure 1 (right).  With this template, the nearby super blocks are easily established when considering any 
new location. 

A second important computational trick is to sort all of the data by super block index number.  Each super 
block is indexed from 1 to nsbX x nsbY x nsbZ. using a 1-D index (see GSLIB book).  An array (of size 
equal to the total number of blocks in the super block network) is constructed that stores the cumulative 
number of data for each super block and all super blocks with lesser block indices, i.e.,  
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where nisb(j) is the number of data in super block j, and c(0)=0.  Then the number falling within any super 
block i is c(i)-c(i-1) and their index location starts at c(i-1)+1.  Therefore, this one array contains 
information on the number of data in each super block and their location in memory. 

Simulation Parameters 
There are four parameters that affect the time required for simulation and will be considered here: 

1. Number of cells in the grid (nx, ny, and nz) 

2. Number of data to search for (ndat or maxdat) 

3. Search radius parameterized by ax, ay and az 

4. Number of super blocks (nsbx, nsby, and nsbz) 

The number of super blocks used in GSLIB programs (KT3D, SGSIM, etc) is currently tied to the number 
of cells in the model. This is a good rule of thumb as the cell size, and therefore number of cells, should be 
selected to account for the data spacing. However, in terms of measuring CPU efficiency the time required 
for simulation (or estimation) increases with the number of cells in the grid regardless of the number of 
super blocks used. Similar statements may be made about the number of data retained and the search 
radius; retaining more data at further distances is a decision made based on the data configuration and range 
of correlation. These decisions will impact both the quality of the simulation and the time required to 
generate realizations; the number of super blocks is a parameter that does not change the results. 
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2D Data Set 
A 2D data set with 140 data points was used to determine the effect of super blocks on the CPU time for 
simulation. Figure 2 shows location maps of the data and the grid domain, with 10 (left) and 50 (right) 
super blocks superimposed. The data extents are 50m x 50m. The smaller super block size has one datum 
per block. A number of cases were simulated with a modified version of SGSIM (Deutsch and Journel, 
1998) that allows the user to define the number of super blocks. The parameters were varied as follows: 

1. The number of cells were varied from nx = ny = 100, 200, and 400 

2. The number of data to retain from the search was ndat = 8, 16, 24, and 32 

3. The search radii were set as ax = ay = 10, 20, and 40 

4. The number of super blocks in the grid were nsbx = nsby = 1, 2, 5, 10, 25, 50, 100, and 200 

Of these parameter sets, 24 different cases with varying numbers of super blocks were simulated with 100 
realizations in each. Figure 3 shows a graph of the number of super blocks on a side of the grid vs. the 
simulation time required, with all 24 cases represented by lines. In Figure 3 it may be seen that the optimal 
number of super blocks for this data set is a low number, with the best for individual cases ranging from 1 
to 25; in many cases the simulation times using 1, 2, 5, and 10 super blocks are within a second of one 
another. Using longer search radii, fewer super blocks is a slightly more efficient choice. 

The simulation times are very similar for low numbers of super blocks. This suggests that for models with 
few data the number of super blocks is largely inconsequential and it is nearly as efficient to just search all 
of the data (corresponding to one super block). When too many super blocks are used the search over all 
blocks within range becomes more cumbersome than simply considering the individual data points. 

3D Data Set 
Data are not random or two-dimensional.  They are organized along drillholes and wells. An example data 
set was used that contains 3303 data points in 62 vertical wells. The data extents are approximately 
10,500m x 10,500m x 400m. Aerial views of this data with 5 and 20 super blocks are shown in Figure 4 
and Figure 6 shows cross-sectional views with 20 super blocks horizontally and 5 and 20 vertically. The 
data are spaced approximately every 1000m horizontally and 1m vertically. 

1. The number of cells were varied from nx = ny = 41 and 61, and nz = 40, 80, and 125 

2. The number of data to retain from the search was ndat = 8, 16, and 24 

3. The search radii were frozen as ax = ay = 3000 and az = 100 

4. The number of super blocks in the grid were nsbx = nsby = 1, 10, 20, 30, and 40 with nsbz = 10, 
and nsbz = 1, 5, 10, 20, and 40 with nsbx = nsby = 20 

The simulation times for 10 realizations in each case are shown in Figure 5 for varying X and Y super 
blocks; and Figure 7 for varying Z super blocks. The most efficient number of super blocks in the X and Y 
directions appears to be in the 10-20 range with little to no difference within this range in all cases. This 
corresponds to super blocks with sizes of 50m – 100m. 

For the cases that vary the number of super blocks in the Z direction, the optimal number of superblocks is 
about 10 in all cases. This means the optimal super block size is about 40m, or 40 data intervals. There are 
on the order of several hundred super blocks containing data for 20 x 20 x 10 super blocks in the grid; 
searching these blocks is more efficient than searching through thousands of data locations or super blocks. 

Conclusions 
Ever increasing computer speed has removed focus from improving the speed of geostatistical algorithms; 
however, constructing large 3-D geostatistical models remains computer intensive and taking all reasonable 
steps to improve speed is important. For data sets that have scattered points the best super block size is of 
the same order of magnitude as the data spacing; for strings of data the optimal super block size is that 
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which reduces the number of distance calculations from thousands (the number of data) to hundreds (the 
number of informed super blocks). 

To set up an optimal search the size of the super blocks could be varied, keeping the anisotropy constant, 
until the number of super blocks containing data is in the hundreds rather than thousands. If there are only a 
few hundred data points than optimization of the super block search parameters will most likely not be 
worth the computational effort required. 

References 
Deutsch, C. V., and Journel, A.G. (1998) GSLIB: Geostatistical Software Library, Oxford University Press, 

New York. 

Deutsch, C. V. (2002) Geostatistical Reservoir Modeling, Oxford University Press, New York. 

Journel, A.G., and Huijbregts, Ch. (1978) Mining Geostatistics, Academic Press. 

 

 
Figure 1: Illustration of a super block grid network over some data (left) and the relevant super blocks to 
consider searching (right). 

  
Figure 2: Location map of the 140 2D data. Left: 10 super blocks in the X and Y directions; right: 50 super 
blocks in the X and Y directions. 
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Figure 3: Simulation times for 100 SGSIM realizations using the 2D data. The horizontal axis is the 
number of super blocks in the X and Y directions. Each data series has all other parameters fixed. 

  
Figure 4: Areal location map of the 3D well data. Left: 5 super blocks in the X and Y directions; right: 20 
super blocks in the X and Y directions. 

 
Figure 5: Simulation times for 10 SGSIM realizations using the 3D data. The horizontal axis is the number 
of super blocks in the X and Y directions. Each data series has all other parameters fixed. 

 

 

 



 405-6 

 

 

  
Figure 6: Vertical location map of the 3D well data. Left: 20 super blocks in the X and Y directions and 5 
in the Z direction; right: 20 super blocks in the X and Y directions and 10 in the Z direction. 

 

 

 

 
Figure 7: Simulation times for 10 SGSIM realizations in all of the cases using the 3D data. The horizontal 
axis is the number of super blocks in the Z direction. Each data series has all other parameters fixed. 


