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Negative weights in Kriging arise when close data in the neighborhood of estimation screen outlying data.  
The negative weights can be significant depending on the variogram and the data configuration.  Negative 
weights may be desirable when estimating smooth variables and continuous phenomena such as surfaces or 
thickness values; they permit extrapolation of local trends.  Negative weights, however, cause Kriging to be 
a nonconvex estimator, that is, the estimate may be less than the minimum data value or greater than the 
maximum data value.  This is a good feature when the estimation is accounting for a local trend in the data 
values; however nonconvex estimation may cause negative or nonphysical estimates.  Mass or volume 
fractions must be between 0 and 1. Probabilities must also be between 0 and 1. Rate constants must be non 
negative.  Previous authors have presented nonlinear programming algorithms to minimize the estimation 
variance under a constraint of non-negative Kriging weights (Barnes and Johnson, 1984; Szidarovszky, 
Baafi and Kim, 1987; Herzfeld, 1989). These methods are relatively CPU intensive and complex.  
 
The approach presented here is based on Rosen’s gradient method, which gives the same solution with 
much less CPU time and with a simpler formulism. This algorithm can be used for any linear or nonlinear 
type of Kriging including: Simple Kriging (SK), Ordinary Kriging (OK) and Universal Kriging (UK).  
 
Simple Kriging (SK) 
 
Consider the estimate of an unsampled value ( )z u  from neighboring data values ( ); 1,2,...,z u = nα α .  The 
Simple Kriging (SK) estimator is written as: 
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Where m  is the mean of regionalized variable. The simple Kriging (SK) estimator is unbiased since the 
error mean is equal to zero, (Goovaerts, 1997).  The Kriging Variance is calculated as follow: 
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The model of nonlinear programming for Simple Kriging can be written as: 
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The gradient of function f is written as: 
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The gradient also can be written as: 
                                                                     ( ) 2. . 2.g x C x r= −                                                                 (4) 
 
Where: 

                               

11 1

1 *

C
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

… n

n nn n n

C C

C C

1

*1

x
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦n n

λ

λ

1

*1

r
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

u

un n

C

C

 



 409-2 

We can add any linear equality or non equality constrains to this model. 
                                                     Minimize ( )f x                                                                                         (5) 
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.
.

A x b
E x e

≤
=

 

SK With Nonnegative Weights 
The constraint of non-negative Simple Kriging weights is: 
                                                  ( ) 0u ≤λ− α  n..1=α∀  
A is a diagonal matrix with diagonal elements equal to -1 as follows: 
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SK With Constrained Estimation Walues 
If we want to set ( )L SK Uz z zu∗< <  then  
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 ,  E  and e  are empty. 

 
Ordinary Kriging (OK) 
Ordinary Kriging (OK) is like simple kriging with the linear constraint that the weights sum to one: 
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Non-negative kriging weights or constrained estimate value can be applied to OK sytem the same as SK. 
 
Universal Kriging (UK) 
Consider the linear trend model in 2D:  ( ) yaxaay,xm yx0 ++= .    So E and e are defined as: 
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According to the trend model, E  and e can be easily defined. 
 
Rosen’s Gradient Projection Algorithm 
Kriging variance is a function of  i ; i 1..naλ =  that should be minimized subject to some constrains that 
defined above.  Barnes and Johnson (1984) and Szidarovszky (et. al. 1987) defined a new function such 
that all constrains are honed in this new function. To optimization this function, they suggested numerical 
algorithms that are based on random path searching algorithms and very CPU intensive.  
 
The negative value of a gradient vector of a function is direction of maximum decrees of that function. This 
property is used in all gradient based optimization methods. In these algorithms, negative of gradient vector 
is used to improve initial answer and new point calculated; gradient of function should be recalculated at all 
new points. These algorithms are much faster than searching methods.  
 
To use constraints with gradient methods, Rosen (1960) used projection of gradient vector on the each of 
constrains. So this new direction always honor constrains and also is a direction to minimize the function.  
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Stages of algorithm are as following (Rosen 1960): 

Initialization Step: Chose an initial answer of 1x  with 1.A x ≤ b  and 1.E x = e . Suppose that At  and tb  

are decomposed into ( )1 2,A At t  and ( )1 2,b bt t  such that 1 1 1.A x b=  and 2 1 2.A x b< . Let k=1 and go to the 

main step. 
 
Main step 
1.  Let 1( , )M A E=t t t . If M  is empty, let P=I  (identical matrix); otherwise, let 1( )P I M MM M−= − t t .  
Let . ( )d P g x= −k k . If 0d ≠k  go to step 2. If 0d =k , stop if M  is empty; otherwise, let 

1( ) . ( )M.M M g x−= − t
kw and let ( , )w u v=t t t . If 0u ≥ , Stop; xk  is the Kuhn-Tucker point. Else chose a 

negative component of u, say u j . Update 1A  by deleting the row corresponding to u j , and repeat step 1. 
2. Calculate α  by following equations: 
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Let 1 .x x d+ = +k k kα . Replace k by k+1 and suppose that At  and bt  are decomposed into ( )1 2,A At t  and 

( )1 2,b bt t  such that 1 1.A x b=k  and 2 2.A x b<k .  Repeat step 1. 

 
The rosen program has been provide based on GSLIB (Deutsch and Journel 1998) which solves Kriging 
system with Rosen gradient method.  
 
The parameter file of Rosen program is the same as kt3d (Deutsch and Jurnel 1998) but has extra 
parameters at the last line. Stype is an integer value as bellow: 
 

0:  Use Lagrange multiplier to solve the kriging system; identical to kt3d. 
1:  Use Rosen method without any constraints. 
2:  Use Rosen with positive weights. 
3:  Use Rosen with  * min≥Z z  
4: Use Rosen with  * max≤Z z  
5: Use Rosen With *min max≤ ≤z Z z  

 
Rn is number of decimal points.  
 
Rosen algorithm is based on improving an initial value that should honor all constrains at the beginning. 
Choosing a proper initial value improve the speed of algorithm.   Finding an initial value is an issue at 
kriging with a trend model, because each trend model should be honored by initial value.  This algorithm 
loops until to reach an answer with acceptable accuracy. Algorithm need more time to reach more 
accuracy. Figure 2 shows the effect of Rn parameter in the speed of this algorithm. A domain with 50*50 
grid nodes has been estimated by simple kriging without any constraints.  This graph shows a liner 
correlation between RN and the time spent by algorithm. 
 
Figure 3 shows the speed of Rosen algorithm compare to Lagrange method. The same domain with 50*50 
grids nodes was estimated with Rosen and Lagrange methods. Vertical ax is the time that spent by each 
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algorithm in seconds. The horizontal ax is the number of points that are used to estimate of each block. The 
Rn is frozen in 5. This Figure shows the time difference between Lagrange and Rosen methods. By 
increasing number of points used in estimation, speed of Rosen algorithm is decreased rapidly.  
 
Figure 4, shows the time of rosen algorithm with different constraints. SK has no constraint so it is faster 
than others . OK use on equal constraint and OK with positive estimate has one equal and one unequal 
constrains. Using Rosen kriging with positive weights at each estimate point, there is Na number of 
unequal constrains where Na is number of data are used in that pint. It is very cleat that Rosen algorithm is 
very sensitive to number of constrains. 
 
Discussion 
 
Negative weights make Kriging nonconvex that sometimes estimates unacceptable values such as negative 
grades, etc. There are some methods to solve this problem but Rosen’s Gradient method is an exact 
solution.  It can be used with any type of Kriging estimators.  This Method can also be used by all nonlinear 
Kriging estimators such as lognormal Kriging, Gaussian transformation, Indication Kriging and disjunctive 
Kriging.  Because of convexity property of Rosen Kriging there is no need to guess the minimum and 
maximum data values at Gaussian transformation.  With some simple modification it can also be applied to 
any Kriging estimators as well as Indicator Kriging (IK) and Co-Kriging .  This algorithm is significantly 
faster that alternative non-linear programming algorithms. 
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Figure 1. Rosen parameter file 

 

 
Figure 2. Impact of Rn paramer in the time of Rosen algorithm 
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                  Parameters for KT3D 
                  ******************* 
 
START OF PARAMETERS:  
cluster.dat                      -file with data 
0  1  2  0  3  0                 -   columns for DH,X,Y,Z,var,sec var 
-1.0e21   1.0e21                 -   trimming limits 
0                                -option: 0=grid, 1=cross, 2=jackknife 
xvk.dat                          -file with jackknife data 
1   2   0    3    0              -   columns for X,Y,Z,vr and sec var 
0                                -debugging level: 0,1,2,3 
kt3d.dbg                         -debug file  
kt3d.out                         -output file 
50    0.5   1                    -nx,xmn,xsiz 
50    0.5   1                    -ny,ymn,ysiz 
1     0     1                    -nz,zmn,zsiz 
1    1      1                    -x,y and z block discretization 
0    20                          -min, max data for kriging 
0                                -max per octant (0-> not used) 
1000.0  1000.0  1000.0           -maximum search radii 
 0.0   0.0   0.0                 -angles for search ellipsoid 
1     0                          -0=SK,1=OK,2=non-st SK,3=exdrift 
0 0 0 0 0 0 0 0 0                -drift: x,y,z,xx,yy,zz,xy,xz,zy 
0                                -0, variable; 1, estimate trend 
extdrift.dat                     -gridded file with drift/mean 
4                                -  column number in gridded file 
1    0.2                         -nst, nugget effect 
1    0.8   0.0   0.0   0.0        -it,cc,ang1,ang2,ang3 
         10.0  10.0  10.0        -a_hmax, a_hmin, a_vert 
1     8   0    60               - stype,RN,zmin,zmax 

Seconds 

RN 



 409-6 

0

5

10

15

20

25

30

35

5 15 25 35 45 55 65 75 85 95

R osen S K

Lagrange S K

 

0

5

10

15

20

25

30

35

40

45

5 15 25 35 45 55 65 75 85 95

R osen OK

Lagrange OK

 
Figure 3. Time of Rosen and Lagrange Algorithms; left: Simple Kriging; Right Ordinary Kriging 

 
 

0

50

100

150

200

250

5 15 25 35 45 55 65 75 85 95

R osen OK , Poss itve Weights

R osen OK , Pos itive E stimate

R osen OK

R osen S K

 
Figure 4. Time of Rosen algorithm with different type of constants 
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