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On Secondary Data Integration 
 

Sahyun Hong and Clayton V. Deutsch 

 

A longstanding problem in geostatistics is the integration of multiple secondary data in the construction of 

high resolution models.  In the presence of multiple secondary data, a workflow for modeling would 

involve: (1) integrate secondary data into unit of the primary variable, then (2) integrate secondary 

derived estimates with the well data.  Results from the first integration step will be a probability map/cube 

or estimate of the continuous variable.  These intermediate results are integrated with well data through 

spatial modeling.  Variants of kriging are well established techniques to account for spatial variability.  A 

large variety of methods are used for integrating the secondary data.  Probability combination schemes 

have received much attention recently for this. The main challenge with these probability combination 

schemes (PCS) is fair consideration of redundant secondary data.  Several combination models to meet this 

challenge are reviewed.  Their limitations and possible applications are described.  As an alternative to 

combining probability, direct modeling the multivariate distribution between secondary and primary 

variables is advanced.  In this method, joint distribution is modeled in a nonparametric way and it is 

refined under marginal constraints.  A simple and fast algorithm is developed to impose marginal 

conditions on initial joint distributions.  The effectiveness of the discussed methods is demonstrated 

through some examples with related references. 

 

Introduction 

Building numerical reservoir models is an intermediate but essential step for reservoir management.  

Numerical models are usually used to plan new wells, calculate overall hydrocarbon reserves and to 

predict the reservoir performance in a flow simulator.  Accurate reservoir models will lead to accurate 

predictions of reservoir performance and improve reservoir management decisions.  Thus, constructing 

numerical geologic models is an important step in reservoir management.  Accurate reservoir modeling, 

however, is difficult to achieve given sparse well data; the reservoir properties such as facies, porosities, 

permeabilities and fluid saturations are typically sampled at few well locations.  Due to this sparse 

knowledge the built reservoir models are poorly constrained away from well locations, which leads to 

considerable uncertainty in the spatial distribution of reservoir properties. 

 Secondary data helps reduce uncertainty in a numerical model.  Diverse auxiliary data sources 

are commonly available in petroleum applications.  These data include well test data, seismic data, analog 

outcrops, and conceptual geological interpretations.  Each data source carries information on the 

reservoir properties at different scales and with varying levels of precision.  The main purpose of utilizing 

these secondary data is to provide accurate models and to reduce the uncertainty in the reservoir 

performance predictions.  The idea is to integrate various data in a consistent manner to characterize 

reservoir properties of interest.  All of the information must be integrated into comprehensive and 

consistent representation of the reservoir. 

 

Primary and Secondary Data 

Data used for reservoir modeling is divided into two types: primary and secondary data.  Direct 

measurements of reservoir properties are denoted as primary or hard data, while data that provide 

indirect measurement are denoted as secondary or soft data.  Primary data is a direct measurement of 

the properties being predicted, but they are sparsely distributed over the reservoir.  Well logs and core 

data are treated as the primary data.  Secondary data are usually acquired from geophysical surveys, 

geologic interpretations and/or previously simulated variables being related to the primary variable; thus, 

they have wide coverage.  Seismic data is an important source of secondary information.  Several seismic 

attributes are extracted from a raw data and they could be good indicators of reservoir properties being 

predicted with varying degree of relation.  In addition to quantitative seismic data, geologic maps derived 

from geologist or analogue information are valuable data that should be accounted for during reservoir 

modeling. 
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 The uncertainty in the constructed model will decrease with additional data sources, however, it 

is not easy to reconcile various data because they have varying scale and spatial coverage.  Secondary 

data that typically have larger scale than the modeling scale.  Multiple secondary are first integrated 

together, and secondary derived estimates are then combined with small scaled primary data.  When 

integrating secondary data first, it is crucial to properly account for data redundancy that represents how 

closely secondary data are related with respect to the primary data.  Data redundancy may not fully 

explained by correlation coefficient or covariance among data and it arises from data interaction that is 

usually better described in the nonlinear manner. 

   
Figure-1: An illustration showing various scales and spatial coverage of data (modified from Harris and 

Langan, 1997). 

 

A Workflow for Reservoir Modeling with Secondary Data 

Procedure of geostatistical reservoir modeling with secondary data can be divided into two parts; 

secondary data are first integrated generating probability or probability distribution related to the 

primary variable, and then they are integrated with primary data.  The sketch shown in the figure-2 

demonstrates the overall workflow for reservoir modeling in the presence of multiple secondary data.  

Exhaustiveness is an inherent assumption on the secondary data.  Qualitative map such as geologic 

interpretation should be converted into digitized images.  Data aggregation step is aimed at reducing the 

number of secondary data by merging the highly correlated secondary data (Babak and Deutsch, 2007).  

Aggregating step should be performed when too many secondary data, e.g. more than 6, are initially 

prepared.  Merged data will be treated as new secondary data for a subsequent integration.  In the first 

integration step, the primary data is used only for calibrating the relation between primary and a set of 

secondary data.  The spatial correlation of the primary data is not considered in this step.  No scale 

different is assumed among gridded secondary data.  As a result of first step, several secondary data are 

converted into a single probability or probability distribution term summarizing all secondary information.  

Relevance of the secondary data to the primary data is fully accounted for in this step.  For instances, 

higher acoustic impedance represents lower porosity or lower proportion of porous rock, and this relation 

is quantified through probability distribution modeling. 
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 Figure-2: A workflow of geostatistical reservoir modeling in the presence of secondary data 

 

Accounting for data redundancy is crucial in the secondary data integration.  Results will be highly biased 

if data redundancy is not properly considered.  Figure-3 illustrates the effect of incremental information.  

Facies probability is estimated at an unsampled location from no secondary to several secondary data.  

Each secondary data has a linear correlation of 0.46 to the primary variable, and secondary data 

themselves have linear correlations between 0.46 – 0.82.   Probabilities are estimated from secondary 

data with and without accounting for data redundancy, and they are plotted as filled rectangles and 

diamonds in the figure-3.  It is a simple and reasonable view to assign the global proportion at an 

unsampled location when no data is considered.  If the related secondary data are available they would 
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give more confident information about an unsampled location than global proportion leading to an 

increase of the estimated probability.  The estimated probabilities; however, unfairly become close to 1 

when redundancy is simply ignored in which case the relevance of each secondary data to the primary 

variable is fully considered.  Bias of the estimated probability is reduced when data redundancy is 

accounted for.    

 
Figure-3:  An example of illustrating incremental information impact on the probability estimate.  

Probabilities are estimated with and without accounting for data redundancy. 

 

The second part in the overall workflow (figure-2) is to combine the primary data and the secondary data-

derived probabilities or probability distribution.  Spatial (cross) variability is modeled in this step.  

Although multiple secondary data is initially considered, a single calibrated secondary variable is used 

hereafter because former step integrates the multiple secondary data converting them into a single 

secondary-derived variable.  The effort of cross variogram modeling is considerably reduced; one cross 

variogram modeling is necessary regardless of the number of secondary data.  The secondary data 

themselves could be used as secondary variables for estimation and simulation without first integration 

step.  The secondary data calibration enters through the modeling of cross variograms between the 

primary and secondary data.  Relevance and redundancy of secondary data are implicitly modeled in the 

cokriging equation.  Despite of its flexibility of cokriging, two step modeling process is preferred because: 

(1) inference of cross variogram becomes tedious in a direct use of secondary data, (2) non-linear relation 

among secondary data can be modeled in the secondary data integration, and (4) the integrated results 

themselves give useful information about the spatial variability of primary variable which potentially could 

be used for locating new wells. 

 Variants of kriging have been well established techniques for the second integration step of 

workflow demonstrated in the figure-2.  This overview paper laid more emphasis on several methods for 

the first integration step.  In particular, probability combination scheme and direct modeling the joint pdf 

scheme.  For clarity, we will focus on the modeling of a categorical variable.  An application to the 

continuous variable modeling is introduced at the end of the paper with related references. 

 

Probability Combination 

Probability combination schemes (PCS in short) have been developed independently in many research 

areas in order to find a consensus probability using several single source derived probabilities (Winkler, 

1981; McConway, 1981; Lee et al., 1987; Benediktsson and Swain 1992, Journel, 2002).  Main principle of 

probability combination approaches is to approximate the target probability through linking the individual 

probability that is computed using individual secondary data.  In a geostatistical data integration context, 

our interest is to estimate the probability of primary variable that is jointly conditioned to secondary data 

and this probability will be estimated by combining individual probability that are obtained from 

calibrating each secondary data (not jointly conditioning).  Figure-4 shows a schematic diagram of PCS. 
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 Figure-4: A diagram for showing PCS 

 

The target probability to be estimated is expressed as p(k|D1,…,Dnsec) where primary and secondary data 

are denoted as k=1,…,K and Di, i=1,…,nsec.  To generate elementary probabilities, p(k|Di), secondary data 

are calibrated individually.  In the PCS, different types of secondary data can be calibrated using the most 

appropriate method for each data.  In its general mathematical form, the probability is approximated by: 
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Probability terms independent of primary variable k are absorbed in a normalizing term C.  p(k) is a global 

proportion of k=1,…,K.  Function Φ[⋅] is a generic notation of probability combination model and it would 

have various names such as permanence of ratio, tau and lamda model. 

Permanence of Ratios (PR-model) 

Journel (2002) developed a permanence of ratios model that approximates the probability under 

assuming that ratios of probability increments from different sources are constant.  PR model estimates 

the probability as: 
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The estimated probability by PR model meets closure condition and positiveness regardless of number of 

data Di.  The PR model; however, is limited to only binary case k=1 or 2.  For instances, sum of 

pPR(k|Di,i=1,…,nsec) over k=1,…,K where K is greater than 2 does not always amount to 1.  A numerical 

example of this violation is demonstrated in Hong and Deutsch (2009).   

Conditional Independence 

Assumption made in PR model is same as the independence assumption of (D1,…,Dnsec) conditioned to 

primary variable k=1,2.  Equivalence of PR model and conditional independence is proved for the binary 

case.  Under conditional independence assumption of (D1,…,Dnsec), the generic equation for combining 

conditional probabilities shown in the equation (1) becomes: 
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C is a normalizing term to meet the closure condition and it is independent of primary variable k.  It will be 

removed by normalizing: 
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This equivalence holds for binary case k=1,2.  PR model is not mathematically valid when more than two 

categories are to be considered.  Instead conditional independence should be used because it enforces 

the closure condition, for example when ternary facies are occurring: 
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where k′≠k′′≠k=1,2,3. 

Weighted Combination 

Permanence of ratios and conditional independence model all assumed independence among secondary 

data.  By adopting independence assumption, combing probabilities is simplified into the product of 

individual probabilities, p(k|Di).  In some cases, the simplified model could make a serious bias because 

multiplication of each probability result in a very high combined probability possibly far away from p(k) 

and all p(k|Di), i=1,…,nsec.  In particular, the resulting probability becomes very close to 1 or 0 as seen in 

the introductory example in the figure-3 if many secondary data are considered for integrating and they 

are highly redundant. 

 Weighted combination approaches are advanced to adjust the influence of elementary 

probabilities.  The probability is approximated by combining individual probabilities with data specific 

weights: 
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One of the weighted model is the Tau model and the model has been actively used for combining data 

specific probabilities since its first development by Journel (2002) (Krishnana, 2004; Caers et al., 2004; 

Castro et al., 2006; Chugunova and Hu, 2008).  Tau model approximates p(k|Di,i=1,…,nsec) by imposing 

power τi: 
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Tau model has the same form of PR model except introducing power weights τi that controls the 

contribution of elementary probabilities p(k|Di).  Similar to the PR model, Tau model only works for binary 

case, k=1 and 2.  There is no guarantee that sum of pTau(k|Di, i=1,…,nsec) over k=1,…,K amounts to 1.   
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Lamda model was developed by Hong and Deutsch (2007).  It can be interpreted as an expanded model of 

conditional independence with introducing data specific weights, λi.  If λi=τi for i=1,…,nsec and binary 

category is only considered then pPR and pLamda are exactly same.  Ladma model is not limited to binary 

case.  For example, the combined probability can be obtained as following if ternary facies is considered: 
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where k′≠k′′≠k=1,2,3.  Thus, the Lamda model is a more generalized weighted combination model.  

In weighted combination models, choosing appropriate weights is a critical issue (Krishnan, 2004).  

Optimal weights would be found if data redundancy among secondary data are fully characterized and 

can be expressed just by power.  However, this is almost impossible.  As an alternative to direct 

quantifying redundancy, calibration method may be considered.  For instances, weights are obtained in 

order to minimize the errors between the true value at well locations and the estimated probability pLamda 

of true value at that location (Hong and Deutsch, 2007). 

Non-convex Property 

Non-convex property represents the integrated probability is not within the used input probability p(k|Di) 

and global proportion p(k).  Non-convexity is natural in data integration.  Integrating diverse data 

amplifies the impact of data sources if they represent the same direction of probability.  This can be seen 

in the form of mathematical expressions shown in equations (2) – (7): multiplication of probability ratios 

make much higher or lower resulting probability.  Degree of non-convexity is also affected by how 

redundant data Di are among themselves.  Although all of elementary probabilities p(k|Di) are in the same 

direction (they are all higher than the global p(k)), non-convexity may not be significant when data are 

highly redundant, and thus the combined probability should not be very high or very low for this case.  

Incorrect weights can make the resulting probability be very high or low.  Again, finding weights is very 

important in combining probability method. 
Applications of PCS 

There are no generalized approaches to calculate data specific weights in the PCS.  Polyakova and Journel 

(2007) derived an exact analytical expression dominated only by a single parameter ν, however, 

approximation is still required for ν value that is case-dependent.  Nevertheless, the principle of 

combining probability can be applied to other applications such as full trend modeling in 3D by combining 

lower order trends. 

 Large scale trend is important feature that should be accounted for in the final geostatistical 

model, however, unfortunately there is no geostatistical technique to account for the trend in an implicit 

way.  A typical way for 3D trend modeling could be divided into three steps (Deutsch, 2002): (1) model the 

areal trend, (2) model the vertical trend against vertical coordinate, and (3) merge 2D areal and 1D 

vertical trend into 3D trend.  Soft information such as seismic map often helps for identifying areal 

variations.  For full 3D proportion modeling, combining lower order proportions has been considered 

since it is easier to fit the vertical and areal proportion than direct modeling a 3D proportion.  Hong and 

Deutsch (2009) demonstrated detailed examples about 3D trend modeling using a weighted proportion 

combination method.  In this paper, some key features are summarized.  Integrating the 2D and 1D 

proportion that may be modeled by different data sources can be viewed as a probability combination 

problem.  Full 3D proportion pk(x,y,z) can be approximated as following: 
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In this form, the 3D proportion is estimated from the multiplication of areal and vertical proportion 

standardized by global proportion.  This approximation also adopts an independence assumption 

between 2D and 1D proportions conditioned to the estimated 3D proportion.  Main drawback of the 

simple method is that the combined trend value can be unfairly larger or lower than both input aerial and 
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vertical trend value leading to a large variability in 3D trend model of which smoothness is an intrinsic 

characteristic.   

 As a way of reducing the possibility of falling outside the input proportion, a weighted 

combination approach is advanced: 
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where w1 and w2 are weights imposed on each proportion ratio.  The weighted model reverts to the 

conditional independence model with letting w1=w2=1.  The proportion ratio has a minimum bound of 0, 

but theoretically it has no maximum bound.  The normalizing term C is disappeared by enforcing the 

closure condition (
1

( , , ) 1
K

kk
p x y z

=
=∑ ).  Figure-5 below shows how the proportion ratio (denoted as X 

in the figure) changes according to the change of weight.  By imposing weights lying within [0,1], the ratio 

is decreased if it is larger than 1, and the ratio is increased if it is smaller than 1.  In other words, 

proportion ratios are forcibly reduced when they tend to be extremes.   

  
Figure-5: An illustration of how the proportion ratio change according to weight in [0,1].  As smaller 

weights are used, the weighted proportion ratio is bounded in shorter range.   

 

In a weighted combination approach, we can prevent the multiplication of proportion ratios, finally the 

combined proportion, from being too high or too small, and consequently, it may lead to better 

reproduction of input trends.     
 Another potential application of probability combination schemes is to aggregate the 

information that is obtained from the data integration process.  Probability combination at this level 

should be differentiated from PCS at data integration level.  Data integration is referred to as assimilating 

the available data such as well data, seismic data, TI and others.  Integrated results are to be various and 

different based on the choice of integration methodology.  Different integrated results sometimes need to 

be considered together as integration procedure often requires the subjective user-input parameters and 

algorithm settings.  Evaluating of multiple results will ensure the production of the most satisfactory 

possible.  Pooling different integration results, conditioned to the same data sources, involves procedure 

with the goal of combining results to find consensus estimates.  This is termed information integration.  

Figure-6 illustrates data integration and information integration. 

 In data integration step, non-convexity is a significant characteristic.  Various integrated 

predictions are resulted from different choice of integration models or parameters with the same data.  

Information integration aggregates those decisions to provide consensus predictions.  The consensus 

must be found by weighted linear averaging: convexity is a desirable property in information integration, 

integrated

consensus 1 1

1

1

1
( | ,..., ) ( | ,..., )

N

m i i mN
i

i

i

p k D D p k D Dα

α =

=

= ∑
∑

 

Weights αi∈[0,1], i=1,…,N might be selected in terms of integration model reliability, accuracy or other 

criterion.  Linear averaging lets consensus probability exist between the integrated results. 
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 Figure-6:  Data integration and information integration.  

 

Direct Modeling of Joint Distribution 

In probability combination approaches, the probability of interest jointly conditioned to secondary data is 

approximated by combining elementary probabilities that are conditioned to single secondary data.  

Another method for estimating the probability of interest is to directly model the joint distribution 

consisting of all of primary and secondary variables.  Once the joint distribution is modeled, the 

conditional probability is immediately derived from the joint pdf using Bayes law.  The direct pdf modeling 

method is motivated by some points: (1) there are many nonparametric techniques for modeling the joint 

distribution among variables, (2) one characteristic of secondary data is exhaustiveness and so the joint 

pdf of secondary data is ignored in the PCS approaches can be modeled very reliably, (3) by modeling the 

joint distribution directly, data redundancy among variables is inherently accounted for not requiring an 

external redundancy calibration.  The sketch shown in the figure-7 illustrates the diagram of the method. 

  
 Figure-7: A schematic illustration for integrating secondary data through building the joint pdf directly. 

 

Build joint PDF by Nonparametric Modeling Method 

Nonparametric density modeling techniques are distribution free methods that do not rely on the 

assumption that the data are drawn from a given probability distribution.  Among various nonparametric 

density modeling techniques, kernel density estimator has been widely used and most investigated 
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mathematically (Scott, 1992).  The flexibility of kernel density estimator is placed at the expenses of 

computational costs.  The method evaluates densities at every bin where we want to estimate density.  

For example, if we have 3 variables (1 primary and 2 secondary variables), 30 sample data and we want 

density estimates at every 50 bins of each variable, then total of 50
(3)

 × 30 = 3,750,000 calculations are 

required for constructing a 3-dimentional probability density functions.  The complexity is expressed in 

general: 

 
(# of variables)

(# of samples)B ×  (10) 

where B is number of bins.  Practical implementation would limit the number of variables by merging 

secondary variables (data aggregation shown in the figure-2).  More than 5 secondary variables would be 

better merged into less than 5 by aggregating closely related variables. 

Constraining joint PDF with Marginal Conditions 

The modeled joint probability distribution f(k,D1,…,Dnsec) must satisfy all axioms of probability 

distributions: non negative density functions, closure condition and reproduction of lower order marginal 

distributions.  Kernel density estimator meets first two axioms if the used kernel function W(⋅) follows 

W(x)≥0 and ∫W(x)dx=1.  The third condition is a marginality condition that the p-variate joint distribution 

should reproduce p′-variate distribution where p′ < p.  The followings are possible marginal conditions 

that the modeled joint distribution f(k,D1,…,Dnsec) must meet: 
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There is no guarantee, however, that the modeled joint distributions meet these marginal conditions.  

f(k,D1,…,Dnsec) is modeled based on the limited samples (n) that is much less than the number of 

secondary values that constitute the marginal distribution f(D1,...,Dnsec).  The collocated secondary data at 

the sample locations normally do not cover the full range of the secondary data.  The marginal 

distribution from the joint distribution may not match the secondary marginal distribution.  Figure-8 

illustrates this case.  The bivariate distribution fKDE (light black line) is modeled using four data points 

(black dots).  Integration of the bivariate distribution over the primary variable (shown as dashed line on 

horizontal axis) has less variability and nearly zero densities outside the collocated secondary values even 

if there are some non zero frequencies over that range.  Thick solid line represents a secondary data pdf 

denoted as freference and it is built from large number of samples.  freference have variations in densities 

through the entire range of secondary values. 

  
Figure-8: A schematic illustration for comparing the reproduced marginal with the known marginal.  Since 

the joint distribution is modeled with the limited well samples its reproduced marginal is not consistent 

with the (very well-known) marginal pdf which is a distribution of secondary data. 

 

Besides, if the global proportion is different form a naïve proportion, for example, after declustering then 

the marginality condition (11) is not achieved. 
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 Given the marginal relations described in (11) and (12), an algorithm is proposed to impose them 

on the joint probability distribution.  The marginals are derived from initial joint distribution and 

compared with the reference marginals.  The differences are directly accounted for in order to adjust the 

initial distributions.  This correcting process is performed in the following steps: 

 Step1. Model the joint distribution of secondary data, f(D1,…,Dnsec) and global proportion of k, 

p(k).  Declustering is considered for obtaining unbiased p(k) if required. 

 Step2. Model the joint distribution f(k,D1,…,Dnsec) using kernel method and define it as f
(0)

 to 

differentiate from the resulting joint distribution. 

 Step3. Scale the f
(0)

 to ensure the marginal distribution shown in equation (12).  The scaling 

equation below is proposed for ensuring the imposed marginal condition: 

 

(0) (1)1 sec
1 sec 1 sec(0)

1 sec

( ,..., )
( , ,..., ) ( , ,..., )

( , ,..., )

n
n n

n

f D D
f k D D f k D D

f k D D dk
× →

∫   
 Step4. Scale the f

(1)
 to ensure the marginal distribution shown in equation (11).  Similar to the 

step 3, the scaling equation below is for updating the f
(1)

: 

 

(1) (2)

1 sec 1 sec(1)

1 sec 1 sec

( )
( , ,..., ) ( , ,..., )

( , ,..., )
n n

n n

p k
f k D D f k D D

f k D D dD dD
× →

⋅⋅⋅ ⋅⋅⋅∫ ∫   
 Step5. Finish the procedures if stopping rule is met, otherwise go to step 6. 

 Step6. Reset f
(2)

 into f
(0)

 and repeat through steps 3 and 5. 

Step 1 and 2 are initial steps to establish the marginal distributions p(k) and f(D1,…,Dnsec).  Steps 3 through 

5 are employed to correct the initial distribution with the considered marginal distributions.  The 

correction is performed by directly accounting for the differences.  Step 5 terminates successive 

adjustments done through step 3 and 4 when the joint distribution becomes stable.  A satisfactory 

stopping rule is to decide on a threshold δ, for example, δ = 0.1 or 0.01, and stop when a complete 

correcting cycle (steps 3 and 4) does not cause changes in distribution by more than pre-defined 

threshold δ.  Another stopping rule could be the error between the reproduced and reference marginal 

distributions.  The algorithm stops when the error becomes less than a specified tolerance: 

 
1 1 1 2

1 2

| ( ,..., ) ( ,..., ) | , | ( ) ( ) |

and

( ) / 2

repro ref repro ref

m me f D D f D D e p k p k

e e e

= − = −

= +

  

The proposed sequential updating algorithm can be visualized for better understanding.  Figure-9 

demonstrates the joint probability distribution with one primary (k) and two secondary data (D1,D2).  

Initial joint distributions are modeled based on the limited collocated samples leading to smooth 

distributions.  Big arrows shown in the middle of the figure represent the updating procedures under two 

marginal conditions; vertical direction is for applying the secondary variable marginal f(D1,D2) (step 3) and 

horizontal direction is for applying the primary variable marginal p(k) (step 4).  Updated joint distributions 

are shown in the right of the figure. 

Figure-9:  The 

joint probability distributions modeled by kernel estimator (left column) and updated distributions 

constrained by the imposed marginal conditions (right column).  The arrow shown in the middle 
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represents the direction of marginal fitting:  two horizontal directions are to compare the probability of 

facies p(k), and vertical direction is to compare the secondary data distribution f(D1,D2). 

 

Marginal fitting procedures are sequentially repeated in the direction of big arrows until the stopping 

conditions are met.  Figure-10 shows a result for an applied iterative fitting algorithm with real test data.  

Averaged marginal errors between empirical distributions and reference distributions are plotted against 

iteration numbers.  First iteration drops the errors quickly and the averaged errors become less than 0.1% 

before 30 iterations.  100 iterations make errors very small where the resulting joint distributions become 

stable.  Practices showed that 100 iterations are large enough to generate an updated distribution and it 

took a few minutes with 5 variables (1 primary + 4 secondary) on a 3.2 GHz personal computers. 

  
 Figure-10: Averaged marginal errors versus iterations for a test data. 

 

Incorporating Large Scale Secondary Data 

It is important to integrate information from seismic data that delivers better areal coverage due to 

sparse sampling of well data.  Seismic data; however, inexactly measures facies proportions because of 

geological complications and inherent limitations in seismic data acquisition (Deutsch, 1996).  Poor 

vertical resolution of the seismic data warrants using a single 2D map representing vertically averaged 

facies proportions and the volume vertically averaged is significantly larger than the typical geological 

modeling cell.   

 The explained direct pdf modeling method can be applied to integrate large scaled seismic data.  

The workflow involves following steps: (1) model the secondary data distribution which is a distribution of 

block values and get the representative global facies proportions, (2) model joint distribution using kernel 

density estimator, (3) constraining the joint distribution with the established marginal conditions, and (4) 

derive the conditional probabilities from the constrained joint distribution.  Figures-11 and 12 show a 

synthetic reference image consists of three facies types, randomly selected wells from reference image, 

and simulated secondary variables.  The example is a vertical section of the reservoir with size of 100m in 

lateral and 50m in vertical direction.  Modeling cell size is 1m-by-1m in horizontal and vertical direction.  

Vertical resolution of secondary data is assumed to be 5 times larger than the modeling size and so 

secondary values are generated at every 1m in horizontal and 5m in vertical.  Figure-12 shows the 

comparison of the facies proportions calculated from block average of the reference image and the 

secondary derived proportions.  Visual inspection gives that they show good agreement. 

 Geologic analog data may be the first available data for reservoir study.  Geologists typically 

interpret geology and support their interpretations using the analog data.  Geologic analog or interpreted 

information is often treated deterministically.  Geostatistically constructed reservoir models are then 

validated in light of geologic sense.  Otherwise, geologic data is sometimes used for better inferring the 

geostatistical modeling parameters such as horizontal range, ratio of horizontal to vertical range in 3-D 

variogram model and areal trend (Deutsch and Kupfersberger, 1998). 

 

Incorporating Geologic Map with Soft Secondary Data 

 Joint pdf modeling technique under marginal constraints can be extended for incorporating 

geologic data into soft secondary data.  Geologic data involves an interpreted geologic map or database of 
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geologic patterns which are type of exhaustively sampled images such as soft secondary data.  The joint 

relation between geologic data and soft secondary data was modeled with nonparametric method and 

the known marginal conditions were applied to modify the joint distribution.  By direct modeling the joint 

distribution, the geologic information is fused into the final probabilistic model without external data 

redundancy calibration that the probability combination requires. 

Suppose the true reference image is available as shown in the figure-13.  61 wells are randomly extracted 

from the reference image and treated as well data.  Channel and non-channel are coded as 1 and 0, 

respectively. 

 

 
Figure-11: A synthetic reference image, well data extracted from the reference image and large scaled 

soft secondary data. 

 

 
 Figure-12: Facies proportions from the true image and estimated proportions 

  

  
Figure-13: Reference image showing channel reservoir and 61 well data extracted from the reference 

image. 
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Two seismic variables (Y1 and Y2) are generated and are non-linearly correlated with the linear correlation 

of 0.572 (see figure-14).  The synthetic soft secondary variables are made to differentiate somehow the 

channel and non-channel facies.  Improvements in channel identification are expected by integrating 

those secondary data.  

  
Figure-14:  Two soft secondary variables are generated using the sequential Gaussian simulation and are 

correlated in a non-linear manner as shown in the cross plot of two variables.  

 

One possible geologic map is prepared in the figure-15 showing a certain pattern of complex geologic 

features such as curvilinear channel.  The image is not conditioned to well information; it is simply 

mapped to represent the prior geological/structural concept in terms of expected orientation and 

curvature of channels.  Geologic map data typically need not carry any locally accurate information on the 

reservoir; the main purpose of using geologic map is to reflect a prior knowledge about complex geology 

(Caers and Zhang, 2004).  The prior geologic map data has the same grid definition with the final modeling 

in X and Y direction. 

  
 Figure-15: A geologic map used for integrating with soft secondary data. 

 

Given the soft secondary and geologic map data, the joint distribution is modeled using kernel density 

estimator.  Marginal conditions are established and are applied to constrain the initial distribution.  The 

constrained joint distributions are shown in the figure-16.  Primary, secondary and geologic data are 

denoted as random variables S,Y=[Y1,Y2],G, respectively in the figure.  Joint distribution is modeled in a 

trivariate space, but it is clipped and shown based on the outcomes of primary and secondary geology 

variables.   

 Channel probability is derived from the corrected joint distribution.  Figure-17 illustrates the map 

of channel probability compared with the reference image.  To see the effect of geology information, 

bottom of figure-17 shows the probability of channel estimated from integrating soft secondary and 

geology data (left), and from integrating soft secondary data only (right).  Probabilities are shown if pixels 

have 65% or higher chances of channel.  Geologic heterogeneity is better captured and complex geologic 

patterns are accounted for by considering geology information. 
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 Figure-16: The corrected joint distributions under the imposed marginal constraints. 

 

 

 
Figure-17:  The estimated probability of channel is shown at the top.  Result is compared with reference 

image.  Bottom figures compared two different results from integrating soft secondary and geology, and 

from integrating soft secondary data only. 

 

Applications to the Continuous Variable Modeling 

The described workflow, modeling the joint distribution and constraining it under marginal conditions, 

can be applied to the continuous variable modeling.  Joint pdf among primary and all of secondary data 

are modeled using kernel estimator.  The proposed marginal fitting algorithm imposes marginal 

conditions on initial joint pdf resulting in an updated joint pdf.  Once the joint pdf is obtained, estimates 

of primary variable can be immediately derived from the joint pdf given secondary values at u, u∈A.  
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Because the approach accounts for non-linear relation among primary and secondary data, the derived 

estimates and estimation variances are not just limited to linear correlation coefficient.  An example of 

applying this approach to Bayesian updating technique is demonstrated in Hong and Deutsch (2009).   

 

Discussion 

Incorporating secondary data is a longstanding problem in petroleum geostatistics.  The main difficulties 

arise from the various levels of scales, coverage and precision.  Geostatistical reservoir modeling involves 

two steps in the presence of multiple secondary data.  First, secondary data are integrated to generate an 

estimate in a primary variable unit, e.g. facies probability or estimates of porosity.  Given several 

secondary data, the conditional probability or probability distribution of primary variable are modeled.  In 

the second step, results from the first step are integrated with well data through spatial modeling.   

 There are many approaches for the first secondary data integration step.  In particular, 

probability combination schemes and direct joint pdf modeling are reviewed.  The PCS is an indirect 

estimation method of the conditional probability of interest through combining individual probabilities 

that are obtained from each secondary data.  Despite of potential applicability of this approach such as 3D 

trend modeling or information integration, it is hard to apply to the practical applications because there 

are no generalized ways to estimate data redundancy parameters which is a crucial part in the PCS.  The 

proposed direct joint pdf modeling approach would be more preferable in terms of clarity and robustness.  

The method directly models the joint relations among variables in a nonparametric way and data 

redundancy is implicitly accounted for during joint distribution modeling.  An external redundancy 

calibration process that is often ad-hoc and case-dependent is not required.  Marginality conditions that 

the modeled probability distribution must meet no matter what methods are used are directly evaluated 

in a new method. 
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