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Advances in Locally Varying Anisotropy With MDS 
 

J.B. Boisvert and C. V. Deutsch 

 

Often, geology displays non-linear features such as veins, channels or folds/faults and results in complex 

spatial relationships.  The complex relationships manifest themselves as nonstationary features to be 

incorporated into numerical modeling.  The overall methodology suggested in this paper for incorporating 

locally varying anisotropy (LVA) is to consider how two locations in space are related.  Normally, the 

straight line path is used to relate locations; however, when nonlinear features exist, the appropriate path 

between locations follows the features, such as along a channel in a fluvial deposit.  The distance between 

points is calculated along this non-linear path and converted to a covariance using a standard variogram.  

Because the non-linear path is a non-Euclidian distance metric, positive definiteness of the resulting kriging 

system of equations is not guaranteed.  Multidimensional scaling (MDS) is used to ensure positive 

defiantness while the Dijkstra algorithm is used to determine the path between locations.  A number of 

papers have been presented in past CCG reports that have discussed LVA.  The intention of this paper is to 

present a consistent methodology that can be used to incorporate LVA into geostatistical modeling.  Small 

synthetic examples are presented for illustrative purposes while paper 203 in this report presents a more 

detailed case study incorporating LVA into a larger example.   

 

Introduction 

In a geological setting, anisotropy refers to how continuous a deposit is in different directions.  Often, 

deposits display the type of anisotropy shown in Figure 1.  Anisotropy within geological formations can be 

exploited to increase the accuracy of modeling.  If the direction and magnitude of anisotropy are well 

understood, they can be transferred into modeling to improve performance.  Consider an LVA field 

modeled after the hand drawn directions on Figure 1 and two drill holes through the deposit.  Techniques, 

such as inverse distance, that do not normally consider anisotropy, cannot capture the horizontal 

continuity of the deposit (Figure 2 left).  Other techniques, such as kriging, provide disappointing results 

because only a single direction of continuity can be incorporated into the modeling (Figure 2 middle).  

More geologically realistic results can be obtained by considering that the anisotropy varies locally (Figure 

2 right); however, incorporating LVA in even this simple case is difficult.  More complex anisotropy fields, 

such as Figure 1 left, are challenging. 

 The geological cross sections in Figure 1 provide the motivation for considering LVA; traditional 

geostatistical modeling would only consider a single direction of anisotropy.  Estimates of resource 

volume in these situations would be greatly improved by considering LVA.  This paper  integrates LVA into 

geostatistical modeling. 

         
Figure 1: Cross sections displaying LVA.  Left:  Folding and faulting caused by the San Andreas Fault (www. 

strike-slip.geol.ucsb.edu).  Right: Folding in the northern Rocky Mountains (www. mkutis.iweb.bsu.edu).   
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Figure 2: Top: cross section with the two drill holes (www.mkutis.iweb.bsu.edu).  Lower Left: inverse 

distance estimation.  Lower Middle: Traditional kriging.  Lower Right: Kriging considering LVA. 

 

Methodology 

At the core of resource estimation with geostatistics is spatial prediction of variables from sparse sample 

data.  From these spatial predications of grade, porosity, saturation and concentration, resource and 

reserve calculations can be made.  LVA is incorporated into the spatial predictions of variables by using 

the optimized shortest path distance (SPD) between locations.  The SPD is utilized in a modified version of 

inverse distance weighted interpolation (IDW) to introduce the idea of spatial predictions with nonlinear 

paths as well as to demonstrate the effects of using the SPD in geostatistical modeling. 

 Kriging and sequential Gaussian simulation (SGS) are geostatistical tools often applied in resource 

evaluation studies as an alternative to IDW.  They require the solution to a positive definite system of 

equations.  MDS techniques are introduced to guarantee the positive definiteness of this system of 

equations. 

 

Methodology: Inverse Distance 

The most common form of spatial interpolation is the prediction of estimates from a weighted average of 

nearby data (Babak and Deutsch 2008).  The concept is to determine weights, λα, (Equation 1) to assign to 

surrounding data, zα, and generate an estimate, z*, at an unsampled location, u.  With IDW, the weights 

are obtained by applying an inverse power, ω, to the distance between the unsampled location and the 

nearby samples (Equation 2). 

  �∗(�) = ∑ �	
	�� �	(�)   

where n is the number of data available for estimation. 

  �	 = ����∑ ��������   

The incorporation of the SPD into IDW is straightforward, the distance is replaced with the SPD: 

  �	 = ������∑ ����������    

Paper 110 in CCG report 10 presents a detailed description of the methodology for the calculation of the 

SPD in the presence of LVA.  In summary, the methodology used to calculate the SPD implements the 

Dijkstra algorithm (Dijkstra 1959) to determine the shortest path in a graph where the graph is 

constructed by considering the grid cell blocks as nodes connected by edges.  The distance along an edge 

(Figure 3) is the anisotropic distance calculated using the local anisotropy specification.   
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Figure 3: Dijkstra algorithm steps.  Grid cell centers are considered nodes (circles). 
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Using the weights in Equation 3 the IDW estimate maps are constructed.  Consider an anticline LVA field 

with three drillholes (Figure 5).  There are a total of 78 sample data, thus the distance matrix (D) between 

the 2601 grid nodes and the 78 sample data (Figure 4) is required to calculate the necessary weights.  

Each distance is calculated using the Dijkstra algorithm.  The resulting estimated map is shown in Figure 5.    

 The locally varying dips of the anticline are well reproduced in Figure 5.  Often IDW is used as an 

exploratory technique in the early stages of a geostatistical project; however, there are situations when it 

is preferred, such as when the variogram is difficult to infer for a particular data set.  Notwithstanding the 

simplicity of IDW with LVA, if an estimated map is required it is more common to apply kriging because 

estimates are optimal in the least squared error sense. 

 
Figure 4: Distance matrix (D) between 78 data (3 drill holes with 26 data per drill hole).  Each row of the 

distance matrix represents the distance from one of the 78 samples to the 2601 cells in the model. 

      
Figure 5: Left: Anticline LVA field with a constant anisotropy of 10:1.  Right: Spatial estimates using IDW. 

 

Methodology: Kriging 

Incorporating the SPD into kriging and SGS is not as straightforward as with IDW.  The mathematical 

foundation of kriging and SGS is based on the solution of a positive definite system of equations derived 

from the well known kriging equations (Equation 4).   

 ∑ ��C���, ��� = C(�?, ��)
���       = 1, … , #  

If the covariances in Equation 4 form a positive definite covariance matrix, the solution to the kriging 

system of equations is unique and can be determined (Christakos, 1984 and Cressie, 1991).  Normally, 

positive definiteness is ensured by using an Euclidean distance metric and a covariance function that has 

been shown to result in a positive definite covariance matrix (Christakos 1984); however, covariance 

functions that guarantee positive definiteness when used with the SPD metric have yet to be developed 

nor has it been shown that such covariance functions even exist.  As an alternative to developing 

covariance functions that ensure positive definiteness with SPD, the SPD metric is mapped to a high 

dimensional Euclidean space using MDS algorithms.  In the high dimensional Euclidean space, valid 

covariance models can be used to ensure positive definiteness; however, some accuracy is lost and the 

distance reproduction in the higher dimensional space is not exact (paper 111 in CCG report 10). 
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Figure 6: Transformation of a 51x51 anticline LVA field.  The length of the path E-E’ is shown in all 

coordinate systems.  Note that in the transformed coordinate system (middle and right) there are 2600 

dimensions (2601– 1) but visualization is only possible in the first 2 or 3 dimensions.  

 

A covariance function (i.e. variogram, correlogram, etc) is required to calculate the covariance between 

locations separated by a lag vector (h).  Once the covariance function is known the kriging weights are 

solved for all unsampled locations in the geostatistical model and a smooth estimated map is generated.  

Kriging is implemented by the following algorithm: 

Step 1: Generate the LVA field (paper 103 in CCG report 11). 

Step 2: Calculate the distance matrix between points with the Dijkstra algorithm (paper 110 in Report 10). 

Step 3: Perform MDS to embed all cells in a high dimensional Euclidean space (paper 111 in Report 10). 

Step 4: Model an isotropic variogram to obtain the covariance between locations given the SPD. 

Step 5: For every grid cell: 

a. Determine the nearest n neighbors  

b. Calculate the required n by n distance matrix 

c. From the n by n distance matrix, calculate the covariance matrix using the modeled variogram 

d. Solve the resulting system of equations to determine weights for each datum 

e. Calculate the kriging mean and error variance 

Kriging for a small example is shown in Figure 7.  Step 3 is necessary to ensure that a unique solution to 

the kriging equations exists (Curriero 2005).  The following section discusses steps 4 and 5.  Detailed 

discussion on steps 1 through 3 can be found in the aforementioned CCG reports.  Kriging requires the 

following inputs: 

1. The LVA field (paper 103 in CCG report 11). 

2. The value of n.  In practice this value is usually set between 20-50 depending on the application. 

3. The isotropic variogram.  This variogram is modeled from the available sample data. 

4. The necessary parameters for MDS (paper 111 in CCG report 10) 

Searching for nearby data 

Kriging can be applied using all available data to estimate at an unsampled location.  Each datum receives 

a weight from solving the kriging equations (Equation 4); this is global kriging.  Global kriging is preferred 

in situations where there are few data and the modeling area is stationary; however, when many samples 

are available, it is often impractical due to CPU requirements.  It is common to restrict the number of data 

used to estimate a given location to the nearest n data in the local neighborhood (Deutsch 1998).  This 

step in kriging requires searching for the n nearest neighbors of the estimation location.  One search that 

has been implemented effectively is the super block search (Deutsch 1998).  In the proposed 

methodology the available data are embedded in a q-dimensional space, use of the super block search 
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strategy would require indexing n
q
 super blocks, which is prohibitive in terms of memory requirements.  

An alternative search strategy is to use a k-dimensional tree (kd tree).  The kd tree is a binary search tree 

specifically designed for searching in high dimensional space (Kennel 2004). 

 
Figure 7: Kriging with LVA explained. 

 

An Isotropic Covariance Function 

Kriging requires a function to calculate the covariance between locations, such as the variogram, γ(h).  

The variogram represents the variance between two locations in space separated by a lag vector, h 

(Equation 5).  The variogram is often modeled by first calculating experimental variogram points from the 

method of moments technique (Equation 6) and fitting them with an analytical function (Figure 8). 

  $(%) = &(0) − &(%)   

  $(%) = �)(%) ∑ (*+ − ,+)-)(%)+��    

The experimental variogram can be calculated for discrete values of h by pairing sampled data values 

separated by an appropriate lag, h, and calculating the variance.  The covariance can depend on the 

direction of h as well as the magnitude; however, an isotropic covariance function that is independent of 

direction is applied in LVA kriging.  The magnitude of h separating two locations in space, say points a and 

point b, can be determined by calculating the Euclidean distance between locations once they have been 

embedded in q dimensions (Equation 7).   

6 
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  ./01- = ∑ �2/+ − 21+ �-3+��    

where 2/+  is the coordinate of point a in the i
th

 dimension. 

 

Consider the Walker Lake data set (Isaaks and Srivastava, 1989).  The experimental variogram can be 

generated after applying MDS.  The experimental variogram is calculated for the first 3 dimensions (Figure 

8 below right) and displays very little anisotropy, all three directions are virtually identical with respect to 

the variogram.  Of concern is the reduction in the range of the variogram, initially the range of correlation 

is between 20m-50m while after applying MDS the range is reduced to ~10m.  This is because of the 

imperfect embedding in the new space.  This can be improved upon if more dimensions are considered 

with MDS (Figure 8 below right).   

 The adoption of an isotropic covariance function is justified as the embedding of the grid 

removes all anisotropy from the data (Sampson and Guttorp, 1992), this is the effect seen in Figure 8 

(below right) where the variogram is nearly identical in the first three embedded dimensions.  An isotropic 

variogram in q dimensions can reproduce LVA because these features are captured by the inter-point 

distance matrix generated from the Dijkstra algorithm, rather than in an anisotropic variogram.  

Considering anisotropy in the higher dimensional space would be redundant as the anisotropy should be 

captured in the underlying LVA field used to determine the shortest path between locations.  Moreover, if 

anisotropy is considered in the q-dimensional space it would be difficult to predict the parameters 

necessary to define the analytical covariance function.  It has been the authors experience that often 

q>100.  Generating an anisotropic variogram that considers each of these 100+ dimensions would require 

sufficient data density to inform each dimension. 

 

  
Figure 8: Above: Lines indicate the direction of continuity, the magnitude is proportional to the length of 

the line.  Below Left: Traditional experimental variogram.  Below Right: Experimental variogram 

considering data embedded with MDS. 

7 
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Figure 9: Above: Kriging, color scale is from 0 (black) to 1700 (white). Below: Variograms for each case.  

Note the variance of the kriged estimates is less than the variance of the data. 

 

Kriging requires the variogram using the SPD so that covariance can be determined.  The experimental 

variogram is calculated from Equation 6; an example experimental variogram is shown for the Walker 

Lake data (Figure 8).  A positive definite function must be fit to the available experimental variogram 

because the experimental variogram does not produce kriging system of equations that are positive 

definite.  Table 1 lists the common variogram models used in geostatistics. 

 Not all functions in Table 1 are positive definite for all dimensions.  Extensive literature exists 

that deals with the mathematical validity of covariance functions as well as testing potential functions for 

positive definiteness (Christakos 1984, Matheron 1973, Curriero 2005).  Because the available sample 

data are located in a q dimensional Euclidean space, the selected variogram function must be positive 

definite in q dimensions (Curriero 2005).  If q is selected to be 3, then all variograms commonly used in 

practice are permissible.  However, to increase accuracy it is recommended that q be as large as possible, 

thus limiting the available variogram models. 

Table 1: Some known positive definite variance functions. 

Functions 

Name 
Equation 

dimensions for 

positive 

definiteness 

Comments 
Relevant 

References 

Spherical $(%) = 1.5 ℎ7 − 0.5 8ℎ79:
  (see comment) 

 

Could be made positive 

definite in any dimension: 

consider volume of 

intersecting hyper spheres 

Deutsch 

1998 

Exponential 
$(%) = 1 − ;*< =− (3ℎ)?7? @ 0 < B < 2 

Any Dimension 
Positive definite in any 

dimension. 

Deutsch 

1998 

Matern Class 

D-
+ F- G�2H0�Γ(I)�0� JK%K	� -LM NH OH JK%K	� -LM NP Any Dimension 

See references for more 

details. 

Curriero 

2005  

Retaining 3 dimensions                Retaining 48 dimensions              Retaining 99 dimensions  
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The Kriging Variance 

An interesting result of considering LVA is that the kriging variance is bounded by traditional kriging with a 

single anisotropy specification.  Consider a simple channel example where the anisotropy is 10:1 inside 

the channel and 1:1 outside the channel.  The range of the variogram used in LVA kriging is 8 units with an 

exponential function (Table 1).  The resulting kriging variance is bounded by simple kriging with an omni-

directional range of 8units and simple kriging with an omni-directional range of 80units (Figure 10).  

Simple kriging with an omni-directional range of 80units represents a best case, minimum variance 

scenario for LVA kriging; the shortest path distance cannot be smaller than considering the straightline 

path between points with a range equivalent to 80units.  Similarly, simple kriging with an omni-directional 

range of 8units represents a worst case, maximum variance scenario for LVA kriging; the SPD is smaller 

than or equal to the straightline path between points with a range equivalent to 8units.  As such, the 

variance for LVA kriging (considering a monotonically decreasing covariance function) lies between the 

two extremes.   

 
Figure 10: Above: LVA field.  Below: Variance with simple kriging (range = 8units and range = 80units) and 

variance with LVA kriging.  Section aa’ and bb’ are shown to the right. 

 

Methodology: SGS 

The motivation for considering SGS is the reproduction of the correct variability seen in the original data.  

This is accomplished by generating a number of different equi-probable realizations of the desired 

random function Z(u).  SGS is similar to kriging; first, a location, u, is selected and kriging is performed 

using the nearby data to determine the parameters of the local Gaussian distribution, N(mu,σu).  A random 

value is then drawn from the N(mu,σu) distribution which constitutes a simulated value at u.  This 

simulated value is added to the growing list of simulated nodes and is used when simulating all successive 

locations.  SGS is described in detail in Figure 11. 
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Figure 11: SGS explained.  Simulation of node A is followed by node B.  This process is sequentially 

repeated for all locations.  Previously simulated nodes are included when simulating successive nodes. 

 

The necessary inputs to SGS are identical to those discussed in kriging: an LVA field; the number of nearby 

data to consider; an isotropic variogram; and the necessary parameters for MDS.  There are two aspects 

of SGS that significantly increase computational requirements and require practical solutions.  The first 

aspect is the use of previously simulated locations when performing SGS.  As the sequential process 

proceeds, more simulated nodes become available.  When simulating at u, the growing list of previously 

simulated nodes must be searched to find the nodes in the neighborhood of u, which is more 

computationally demanding than simply searching for nearby sample data as with kriging.  The second 

aspect of SGS that increases computational requirements is the common practice of generating multiple 

(100+) realizations.  While the CPU time required to generate a single realization is reasonable the time 

required to generate 100 realizations would not be practical. This section presents solutions to these two 

issues. 

 

Searching for nearby previously simulated nodes 

Implementation of the SGS algorithm often requires the user to limit the number of data used to improve 

CPU performance.  Not all data can be considered as the solution to the kriging system of equations 

would require excessive CPU time; therefore, it is common to use m nearest data to the simulation 

location and ignore all other data (Deutsch 1998).  All available conditioning data, such as drillholes or 

wells, are assigned to grid nodes.  This is required for the usage of the Dijkstra algorithm when 

determining the SPD between locations.  As such, no distinction is made between previously simulated 

nodes and the initial conditioning sample data; data behave as previously simulated nodes that are fixed 

for each realization.  The problem then reduces to finding the m nearest informed nodes to a given 
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location, u, in a model with N total nodes.  This can be accomplished with a kd tree.  All N grid locations 

are loaded into the search tree and the nearest informed nodes are returned (Kennel 2004). 

 

Considering multiple realizations 

The CPU requirements of SGS in this implementation are significantly larger than considering constant 

anisotropy because of the calculation of covariance between locations.  When anisotropy is constant, a 

covariance lookup table can be created to determine the covariance between grid cells given their xyz 

indices (Deutsch, 1998).  This is not possible with LVA for two reasons (1) the data are no longer on a 

regular grid after MDS and (2) the data are in q dimensions and would require a q dimensional lookup 

table that would be too large to store in RAM.  Regardless of the memory requirements, a covariance 

lookup table is only possible with regularly gridded data.  Thus, when simulating, the distances between 

all informed nodes within the local neighborhood must be calculated as in Equation 7. 

 Multiple realizations, each with a different random path, are typically considered in a 

geostatistical work flow (Deutsch, 2002).   Generating realizations with the same random path produces 

kriging matrices that are identical for all realizations.  The kriging matrices can be stored and used for all 

realizations to improve CPU time by a factor of r, where r is the number of realizations considered.  The 

calculation of the necessary distances between locations (Equation 7) cannot be avoided but if the same 

random path is used for all realizations, these distance calculations are identical for all realizations. 

 A different random path is used for each realization because some practitioners believe artifacts 

may arise otherwise.  Artifacts do occur if an axis aligned sequential path is selected (Isaaks 1991); 

however, there is no evidence that generating realizations using the same random path produces 

artifacts.  The concern is that considering only a single random path may produce realizations that are too 

similar, that is, realizations that to do not properly span the space of uncertainty in the random variable 

modeled, Z(u).  This can be assessed by comparing the statistics of realizations produced with the same 

random path to the statistics of realizations produced with different random paths.  Consider the Walker 

Lake data set, the same data set used in Isaaks (1991) to show that an axis aligned path produces artifacts.  

50 realizations are generated with a single random path and compared to 50 realizations generated with 

different random paths, no visual artifacts are noted (Figure 12).  Two statistics are assessed (1) the 

histogram of the realizations and (2) the variogram of the realizations.  If use of a single random path does 

not adequately span the space of uncertainty, the variations in these measured statistics would be 

reduced.  Figure 13 indicates that there is no reduction in the space of uncertainty for either the 

histogram or variogram when using a single random path for each realization; however, this result cannot 

be generalized to all models.  Unlucky paths that generate realizations with artifacts remain possible.  

Realizations with different random paths could be generated but the necessary CPU time is impracticable 

for any reasonably sized geomodel. 

 
Figure 12: Above: Three realizations using different random paths.  Below: three realizations using the 

same random path. 
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Figure 13: Above: Histograms of 50 realizations.  Below: Standardized variograms of 50 realizations.  SGS 

with LVA does not explicitly reproduce the experimental variograms in the 76˚ and 166˚ directions as 

these directions are not used in the modeling process.  Of interest here is only the variability of the 

resulting variograms using a single random path. 

 

Methodology: Summary 

The methodology for implementing SPD with inverse distance, kriging and SGS is summarized below: 

Inverse distance: 

Step 1: Calculate the SPD with the Dijkstra algorithm 

Step 2: Determine the weights to assign to conditioning data with the typical inverse distance 

methodology (Equation 3) 

Kriging: 

Step 1: Generate the LVA field. 

Step 2: Calculate the initial distance matrix between the required points with the Dijkstra algorithm. 

Step 3: Perform MDS to embed all cells in a high dimensional Euclidean space. 

Step 4: Model an isotropic variogram.  This variogram is used to obtain the covariance between locations 

given the SPD. 

Step 5: For every grid cell, determine the nearest n neighbors and solve the resulting system of equations 

to determine the kriging weights for each datum. 

SGS: 

Step 1: Generate the LVA field. 

Step 2: Calculate the initial distance matrix between the required points with the Dijkstra algorithm. 

Step 3: Perform MDS to embed all cells in a high dimensional Euclidean space. 

Step 4: Model an isotropic variogram.  This variogram is used to obtain the covariance between locations 

given the SPD. 

Step 5: Visit every grid cell in a random order and determine the nearest n neighbors.  Solve the resulting 

system of equations to determine the kriging weights for each datum. 

Step 6: Draw a simulated value at the estimation location for each realization (the same random path is 

used for all realizations). 

Multiple Random Paths                                        A Single Random Path 

Multiple Random Paths                                        A Single Random Path 
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Synthetic Example 

The goal of this paper is to generate geostatistical models that display nonstationary anisotropy.  A single 

specification of anisotropy is often insufficient to fully describe natural phenomenon.  Figure 14 contains a 

number of synthetic examples that highlight some of the types of geological features that can be 

reproduced with LVA including (1) folding (2) non linear channel/vein deposits (3) smoothly changing local 

directions of anisotropy. 

 

Conclusions 

IDW techniques have the advantage of simplicity.  Moreover, the positive definite limitation of kriging and 

SGS does not apply to IDW because a system of equations is not solved, the weights are calculated 

directly from the SPD.  This also implies that MDS algorithms are not required to perform IDW.  The only 

computational requirement is the calculation of the necessary distances with the Dijkstra algorithm.   

 Ideally, when implementing kriging and SGS a covariance function that ensures positive 

definiteness with the SPD metric would be available; however, no such function is known to exist.  MDS 

algorithms provide a mathematical framework within which kriging and SGS can be applied and the 

original SPD matrix is approximately reproduced in the high dimensional space.   

 Estimation and simulation algorithms form the core of geostatistical reserve calculations.  This 

paper summarized methodologies for IDW, kriging and SGS implementations that incorporate LVA.  With 

these tools reserve estimation methodologies, such as Journel and  Kyriakidis (2004), can be modified to 

incorporate LVA.  
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Figure 14: Examples of kriging with LVA.  Left: LVA field direction, anisotropy ratio is constant 10:1.  

Middle Left: Estimates with IDW.  Middle Right: Estimates with kriging with an exponential variogram with 

a range of 200 units.  Right: SGS.  Dimensions of all plots are 51x51 units.  The same data strings with 78 

total data were used.  Scale ranges from black = 0 to orange/gray=6. 


