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Multivariate Probability Estimation for Categorical Variables from 

Marginal Distribution Constraints 

 
Yupeng Li and Clayton V. Deutsch 

 

In geostatistics, the simulation of categorical variables such as facies or rock types requires a conditional 

distribution based on the information from nearby data locations.  The conditional probability can easily 

be calculated from the multivariate distribution of the unsampled value and all data values.  In this paper, 

a new multivariate probability estimation algorithm is proposed.  The multivariate probability is estimated 

from lower order marginal probabilities that are known from the available data.  The required conditional 

probability is then obtained directly by Bayes law.  In this algorithm, the bivariate marginal probabilities 

are imposed to an initial multivariate probability as the constraints and satisfied by iteratively modifying 

the initial multivariate probability.  The bivariate marginal probabilities are inferred from sampled 

locations, a training image or profiles along drill holes or wells.  A sparse matrix is used to calculate the 

marginal probabilities from the multivariate probability, which significantly saves CPU time and makes this 

estimation algorithm practical.  This algorithm can be extended to higher order (m>2) marginal probability 

constraints.  The theoretical framework is developed and illustrated with a number of realistic examples. 

 

Introduction 

In reservoir management, a numerical reservoir model is always required for resource evaluation and 

reservoir flow simulation input for production forecasting and recovery calculations.  Many factors will 

have an effect on numerical reservoir model.  Most geostatistical practitioners agree that facies are one of 

the most important reservoir heterogeneities.  In geology, a facies is a distinctive rock unit that forms 

under certain conditions of sedimentation, reflecting a particular process or environment (e.g. river 

channels, delta systems, submarine fans, reefs).  Usually, facies are rock units that are somehow 

statistically homogeneous. 

 Although, the facies for each unsampled location is unique, it is viewed as a random variable that 

could take a set of possible values or states. The random variables are location dependent and donated 

with the location vector u . The possible outcome of the random variable for the location is denoted as k

and {1, 2,..., }k K∈
 
which are mutually exclusive and exhaustive.  Practically, the total number of facies 

K is less than 5.  We can think of k=u as an event and ( )P k=u  is the probability of this particular 

event being true. 

 

Multivariate probability: A specific spatial arrangement of n  different locations will define a set of 

random variables{ , 1,..., }
i

i n=u .  A state of the facies combination outcomes at each location for a set 

of n  locations is denoted as{ ; 1,..., }
i i

k i n= =u .  The uncertainty (our lack of knowledge) of whether 

or not a state {1,2,... }
i

k K∈
 
exists at location i

u  is characterized by a set of discrete multivariate 

probabilities 1 2 1 2( , ,..., ; , ,..., )
n n

P k k ku u u  written as: 

1 1 1 1 2 2( ,..., ; ,..., ) Prob{ , ,..., }

Prob{ , 1,..., }

 {1,2,... }; 1,..,

n n n n

i i

i

P k k k k k

k i n

k K i n

= = = =

= = =

∈ =

u u u u u

u

            

                       (1) 

The multivariate probability has the following properties: 

1 2 1 20 ( , ,..., ; , ,..., ) 1
n n

P k k k≤ ≤u u u  

1 2 1 2( , ,..., ; , ,..., ) 1n nP k k k =∑ u u u
 

 For convenience, the notation for the multivariate probability will be simplified to 

( , , 1,..., ; , 1,..., )
i i

P i n k i n= =u .  One characteristic of this discrete multivariate probability is its 
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huge state space.  The number of all possible states will be
n

K , and these 
n

K states have different 

probabilities to exist. Consider there are 3 facies in the domain, and 20 sampled locations, then the 

multivariate probability state space will be 203 3,486,784,401= .
 

 

Multivariate probability marginalization: Given the n-variate multivariate probability 

( , 1,..., )P k n= =u
ℓ ℓ

ℓ , different orders of marginal probability can be calculated based on the law of 

total probability.  First order marginal probability 1( ; )
i i

P ku  as a univariate probability of each facies i
k

for the location i
u is defined as: 

1( ; ) ( , 1,..., ; , 1,..., )

i i

i i

All
with k

P k P n k n

=

= = =∑
u

u u
ℓ ℓ

ℓ

ℓ ℓ                                         (2) 

The univariate marginal probability satisfy 
10 ( ; ) 1i iP k≤ ≤u and

1

1

( ; ) 1
i

K

i i

k

P k
=

=∑ u .  

Second order marginal or bivariate marginal probability 2 ( , ; , )
i j i j

P k ku u can be calculated from the 

multivariate probability as: 

2

& ;

( , ; , ) ( , 1,..., ; , 1,..., )

i i j j

i j i j

All
with k k i j

P k k P n k n

= = ≠

= = =∑
u u

u u u
ℓ ℓ

ℓ

ℓ ℓ                       (3) 

The bivariate marginal probability satisfy 20 ( , ; , ) 1
i j i j

P k k≤ ≤u u and
2

1 1

( , ; , ) 1
i j

K K

i j i j

k k

P k k
= =

=∑∑ u u . 

Following this logic, any m order marginal probability of the n-variates multivariate probability 

1 1( ,..., ; ,..., )
m m

P k ku u   simplified as 1( ,..., )
m m

P k k can be calculated as: 

1 1

1 1

,..., ;

( ,..., ; ,..., ) ( , 1,..., ; , 1,..., )

m m

m m m

All
with k k m n

P k k P n k n

= = ≤

= = =∑
u u

u u u
ℓ ℓ

ℓ

ℓ ℓ

       

(4) 

In expression(4), the m-variate marginal probability can be any m arbitrary subgroup of the n random 

variables. 

Conditional probability: we are often interested in estimating the probability that facies i
k

 
prevails at 

location i
u  based on the neighboring data.  The unsampled location is denoted as 1u (could be any 

location in the domain, just for index convenience) in these n  neighboring locations

{ , 1,..., }
i i

k i n= =u . The probability of facies 1k  for unsampled location 1u will be:

1 1 2 2( | ,..., )
n n

P k k k= = =u u u and can be calculated from the multivariate probability based on 

Bayes law: 

1 1 2 2
1 1 2 2

2 2

( , ,..., )
( | ,..., )

( ,..., )

n n
n n

n n

P k k k
P k k k

P k k

= = =
= = = =

= =

u u u
u u u

u u
                              (5) 

In this equation, the numerator is an n-variates multivariate probability, while the denominator is the (n-

1)-variates marginal probability of this n-variates multivariate probability. 

Using the multi-variates marginal probability calculation as expressed in(4), the conditional probability in 

(5) will be calculated as: 
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1

1

1 1 2 2
1 1 2 2

2 2

1 1 2 2

1 1 2 2

1

( , ,..., )
( | ,..., )

( ,..., )

( , ,..., )

( , ,..., )

n n
n n

n n

n n

k K

n n

k

P k k k
P k k k

P k k

P k k k

P k k k
=

=

= = =
= = = =

= =

= = =
=

= = =∑

u u u
u u u

u u

u u u

u u u

                       (6) 

As stated in Equation(6), the inference of this conditional probability distribution is the central problem of 

geostatistics.  There are several established and new approaches to infer the conditional probability 

directly or indirectly, such as indicator kriging or multiple point geostatistics.  In indicator approach 

(Goovaerts, 1994; Journel, 1983), the conditional probability multivariate probability is calculated as a 

linear combination of indicator data: 

1 1 2 2 1 1

2

( | ,..., ) ( | )
n

n n i i i

i

P k k k P k kλ
=

= = = = = =∑u u u u u                                   (7) 

The weights characterize the dependence between the sampled locations i
u and the information from 

sampled locations to unsampled location. 

 In the multipoint statistics approach, the required n-variate multivariate probability is 

constructed from a training image.  The training image represents the heterogeneity characteristics that 

the geologist expects to see in the study area.  Then, the required conditional probability in expression (6) 

can be calculated by just counting the relatively states number occurred in the training image: 

 

1 1 2 2
1 1 2 2

2 2

( , ,..., )
( | , ..., }

( ,..., )

n n
n n

n n

Count k k k
P k k k

Count k k

= = =
= = = =

= =

u u u
u u u

u u
                     (8) 

Those two approaches are reasonable, but the linear probability combination approach of in indicator 

approach may not result in models that show the appropriate level of spatial detail.  The stationary 

assumption in multipoint geostatistics may cause some difficulty.  Furthermore, because of the huge state 

space, it is difficult to get enough replication for higher order multivariate probability from a single 

training image.  Directly estimating the multivariate probability from lower marginal probabilities is 

proposed here to infer the multivariate probability in expression (6) directly.  The lower marginal 

probabilities will have minimal stationary requirement and the nonlinear combination will be more 

appropriate in many cases. 

 

Multivariate probability estimation from marginal constraints 

When the random variables { ; 1,..., }i ik i n= =u
 
are independent, the multivariate probability is given by: 

1 1

1

( ,..., ; ,..., ) ( ; ), 1,...,
n

n n i i i

i

P k k p k k K
=

= =∏u u u

                                                       

(9) 

In most spatial statistics case, the random variables are dependent.  The data information redundancy 

should be considered in the estimation process.  Lower marginal probabilities are used as a tool to 

characterize the information and the redundancy between the sampled locations and the unsampled 

location.  In this approach, the lower marginal probability is used as constraints to iteratively modify the 

estimated multivariate probability until they are all satisfied. The direct multivariate probability 

estimation algorithm (DMPE) illustrated in pseudo-program language in general case is: 

 

Begin 

Input: the univariate probability 1
p  and the known m order marginal probability  

Target
Ρm  

Generate an initial multivariate probability 
*P with the independent assumption: 

*
= ∏ 1

P p  

Repeat  
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- Use  the 
*P as the initial multivariate probability estimation 

δP ; 

- calculate the current marginal Calc
Pm from the current estimated multivariate probability 

δP ;  

- calculate a modify factor vector 
Target

Calc
=

Pm
F

Pm
with the known marginal probability and the current 

estimated marginal probability; 

- calculate a new updated multivariate probability with the modify factor:
1

( ) C
δ δ+

= × ×p F p  

-  give 
1δ +P  to 

δP for next iteration; 

Until:  the change of the multivariate probability is stable:  O ε∆ ≈  With 
1|| ||O

δ δ+
= −p p  

Output: the final estimated multivariate probability 
estP  

End  

In the modification process, C  is used to do normalization to make 
1δ +P a licit probability.  

 

Small Numerical Example 

To illustrate the DMPE process, consider the following spatial simulation problem. One a 1 3× grid, three 

categories may exist at any one of them. In this small case ( 3, 3)n K= = , the total states number will 

be
3

3 27= , all the possible states are shown in Figure 1.  Each of the possible states will have a specific 

probability to exist which is characterized by a multivariate probability. In order to store and index all the 

probabilities more efficiently, the multivariate probabilities are ordered in a one dimension array and 

given a unique index to each of them. The nK states indexed from 1 to  nK  will be calculated using the 

following index function: 

1

1

( , 1,..., ) 1 ( 1)
n

f k n k K
−

=

= = + − ×∑ ℓ

ℓ ℓ

ℓ

ℓ

         

                                 

 

(10) 

In Equation(10), 1,2,...,k K=
ℓ

.  It is obtained by ordering and coding all the categories into an integer 

set according to the order, but how to order the categories does not matter. Table 1 is the index 

calculation example for this case.  

 In this small example, the total number of second order combinations in three grids will be 

3 2 3C = , and each of them may have 9 outcomes, the outcomes of grid 1 and 3 are shown in Figure 2.  

The similar outcomes for combination of grid 1 and 2, or grid 2 and 3, so totally there will be 27 outcomes. 

Generally, for bivariate marginal probability, the total state number will be
2

2n
K C× . Denote the 

multivariate probability is 1 2 27[ , ..., ]T
p p p=P which the probability for each state to exist and also 

denote the bivariate probability as 1 2 27[ , ,..., ]T
b b b=P2 . From equation(3), in this case, each bivariate 

probability can be calculated from the multivariate probability as: 

1

2

27

 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

b

b

b

 
 
 
 
 
 
 
 
 
 
 

= 
 
 
 
 
 
 
 
 
 
 
  

⋮

⋮

⋮

⋮

 0 0 0 0 0 0 0 0 1 0 0
 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1

2

27

 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

p

p

p

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

⋮

⋮

⋮

⋮
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As showing in above matrix equation, each bivariate probability assignment is the sum of the subset 

coming from the full table of the multivariate probability. Their relationship is characterized by the 

indicator index matrix I2 , and it can be written in matrix form as: 

= ×P2 I2 P
                                                                                           (11) 

As the number of locations or grid nodes increase, the dimension of matrix I2 increases dramatically. If 

there are 10 locations and 3 facies, the dimension of matrix I2 will be 405 59049× .
 
And the non-zero 

elements number in each row is
2 10 2

3 6561
n

K
− −

= = which compose a sparse matrix. The column 

numbers for the nonzero value 1 in the sparse matrix depend on which pair of bivariate marginal is 

calculated. The marginalization computation will be a linear sparse matrix computation which is very fast. 

If the bivariate probability for each two locations was given, it will be shown next that the multivariate 

probability can be estimated. Note, in the above (DMPE) algorithm, the lower order marginal probability 

can be any higher order than bivariate marginal probability.  In general, denote Pm as m order marginal 

probability vector, it can be calculated from the multivariate probability as: 

= ×Pm Im P                                                                          (12) 

 

The matrix Im is the indicator index matrix, the dimension is m n
n

K K
m

 
× 

 
 with !

!( )!

n n

m m n m

 
= 

− 

. 

Assume the multivariate probability for the state outcome is already known as in Table 2.  From the 

known multivariate probability, the bivariate probability can also be calculated and listed in Table 2.  The 

input for DMPE algorithm is the univariate probability and bivariate probability.  The estimation result is 

also listed Table 2 which is shown that the known multivariate probabilities are reproduced fairly well. 

 The DMPE algorithm conceived in the effort of geostatistics facies modeling algorithm 

improvement is coincided with one multivariate probability approximation in information theory research 

proposed by Ku and Kullback (1969). In their approach, based on the maximum entropy theory, the 

multivariate probability is obtained from the lower marginal probability by a straightforward iterative 

algorithm which is very similar to the proposed DMPE algorithm in this paper.  In Ku and Kullback 

approach, for a multivariate probability with N variables K discrete categories, the pair wise constraints 

will require K
N
/K

2
=K

N-2
 terms from the full multivariate terms. This operation will be very CPU intensive for 

large N (dependence on K). Many authors recognized this approach as a fantastic approach but noted that 

the computational complex is a major barrier(Freeman, 1971; Saerens and Fouss, 2004) and thus few 

practical applications.  

 While in DMPE approach, each single state of the full states set can be easily indexed. Also, using 

the index indicator transform, the marginalization computation can be done in a very fast linear operation 

style with a small storage requirement by taking advantage of the sparse matrix. This higher efficient 

index and sparse matrix computation in the iterative scheme successfully make this powerful estimation 

more applicable in practical problems. Table 3 is the comparison between these three methods using the 

same data as those used by Ku and Kullback (1969). 

 

Reservoir Example 

The above DMPE algorithm can be used in the traditional cell-based sequential simulation approach 

(Deutsch and Journel, 1998) where all simulation grid cells are visited only once along a random path and 

simulated cell values become conditioning data for cells visited later in the sequence. 

 Any unsampled grid cell u visited along the random path is simulated as follows: 

1.   Look for the n conditioning data (original well data or previously simulated cell values) closest to u ; 

2. Based on the distance between every two locations, retrieve bivariate probability from the 

experimental bivariate probability diagram, see the coming explanation; 

3.   Using the DMPE algorithm to estimate the multivariate probability; 

3.  The estimated conditional probability of each facies at u is computed using the Bayes law based on 

the facies at each conditioning data location, see equation(6);  
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4.  Draw a simulated facies value from the resulting local probability distribution using Monte-Carlo 

sampling, and assign that value to the grid cell u  and go to the next unsampled location until all the 

unsampled location are visited. 

 The needed marginal probability in this DMPE approach can be obtained from a training image or 

geological analysis.  The most easily obtained marginal is the univariate and bivariate marginal 

probabilities.  The univariate marginal is the proportion of all the facies at each unsampled location.  They 

could be the global proportion or locally varying proportions.  In DMPE algorithm, the univariate 

probability will be used to calculate the initial estimation. The bivariate marginal probability for two 

locations is defined as 2 ( , ; , )
i j i j

P k ku u  which can be obtained from the training image, well vertical 

profiles or from outcrops.  From the training image in Figure 3, without thinking the different direction, as 

location ( , )
i j

u u  apart from each other to a further distance, the isotropic bivariate probability between 

facies 1, 2 and 3 will compose a diagram as shown in Figure 4.  

The bivariate probability diagram is close to the transition probability diagram (Li, 2007) that used in the 

new developed markov transition probability based geostatistics (Carle, 2000; Carle and Fogg, 1996; Li 

and Zhang, 2006).  

 

Conclusion 

Discrete multivariate probabilities can be directly estimated from the lower order marginal probability 

distribution constraints.  The estimated multivariate probability works well with reasonable CPU time 

which promises practical use in the future.  The use of m-variate (m>2) marginal constraints can be 

enforced in the iteration process given higher order marginal probabilities can be obtained.  Practical 3D 

simulation and integrating sedimentary patterns from sequence stratigraphy will be the subject of future 

research. 
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Table 1: The one dimensional indices of three variables and three facies 

1k  2k  3k  1

1

1 ( 1)
n

k K −

=

+ − ×∑ ℓ

ℓ

ℓ

 ( , 1,..., )f k n=
ℓ
ℓ  

1 1 1 1+(1-1)*3
(1-1)

+(1-1)*3
(2-1)

+ (1-1)*3
(3-1)

 1 

2 1 1 1+(2-1)*3
(1-1)

+(1-1)*3
(2-1)

+ (1-1)*3
(3-1)

 2 

3 1 1 ⋮ 3 

1 2 1 ⋮ 4 

2 2 1 ⋮ 5 

3 2 1 ⋮ 6 

 

⋮ 

 

⋮ 

 

⋮ 

 

⋮ 

 

⋮ 

2 3 3 1+(2-1)*3
(1-1)

+(3-1)*3
(2-1)

+ (3-1)*3
(3-1)

 26 

3 3 3 1+(3-1)*3
(1-1)

+(3-1)*3
(2-1)

+ (3-1)*3
(3-1)

 27 

 

Table 2 one numerical example of multivariate probability estimation from the DMPE algorithm 

 
 

Table 3 the multivariate probability estimation results from three different approaches 

 

MV index TRUE MV probability Bivariate Marginal estimated MV probability

1 0.0700 0.1390 0.0661

2 0.0350 0.0760 0.0360

3 0.0300 0.0710 0.0329

4 0.0180 0.0950 0.0232

5 0.0410 0.1790 0.0413

6 0.0320 0.0860 0.0265

7 0.0170 0.0750 0.0158

8 0.0150 0.0970 0.0137

9 0.0350 0.1820 0.0376

10 0.0320 0.1050 0.0358

11 0.0340 0.0870 0.0348

12 0.0200 0.0940 0.0154

13 0.0390 0.0910 0.0326

14 0.0890 0.1590 0.0922

15 0.0320 0.1100 0.0351

16 0.0160 0.0970 0.0186

17 0.0360 0.0920 0.0320

18 0.0400 0.1650 0.0415

19 0.0370 0.1350 0.0371

20 0.0260 0.0860 0.0242

21 0.0250 0.0880 0.0267

22 0.0190 0.0910 0.0202

23 0.0490 0.1600 0.0454

24 0.0330 0.1010 0.0354

25 0.0380 0.0670 0.0367

26 0.0350 0.0920 0.0404

27 0.1070 0.1800 0.1029

True MV probability Ku-and-Kullback estimation DMPE estimation

0.10 0.0998 0.0973

0.10 0.1000 0.1023

0.05 0.0496 0.0495

0.05 0.0493 0.0445

0.00 0.0005 0.0049

0.00 0.0003 0.0027

0.10 0.1001 0.0977

0.05 0.0503 0.0510

0.05 0.0503 0.0504

0.10 0.1000 0.0955

0.00 0.0004 0.0039

0.00 0.0076 0.0066

0.05 0.0495 0.0464

0.05 0.0498 0.0504

0.15 0.1499 0.1499

0.15 0.1496 0.1470
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Figure 1 all the states outcomes for 3 categories in 3 grids 

 

 
Figure 2 all the states outcomes for one combination of two grids out of three  

 

 
Figure 3 the training image and the inferred bivariate probability diagram 

 
Figure 4 the DMPE simulation results and traditional SISIM simulation results comparison 


