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Comparison of Simple Indicator Kriging, DMPE, Full MV Approach 

for Categorical Random Variable Simulation 
 

Yupeng Li and Clayton V. Deutsch 

 

Inference of conditional probabilities at unsampled locations is a critical problem in geostatistics.  In the 

context of categorical variables, the probabilities of each category could be calculated by indicator kriging 

or multiple point statistics - two mature conditional probability estimation approaches.  These techniques 

are compared with the newly developed Direct Multivariate Probability Estimation technique.  The 

comparison is based on the information provided by the different techniques.  The informative strength 

function is used as a quantitative uncertainty assessment to the estimation results.  The informative 

strength function measures how our uncertainty is reduced and how the unsampled location gains 

information from related neighbouring locations. 

 

Introduction 

Categorical variables such as facies or rock types usually reflect the origin of a rock unit. Although, the 

true facies for a specific unsampled location is unique, it is usually viewed as a random variable when the 

true facies on some location is inaccessible. The paradigm of geostatistics is to characterize any facies or 

rock types for unsampled location as a categorical random variables which are defined as the set of 

possible values or states that can take over the study area or at any particular location. Usually, the 

random variables are location dependent and donated as ( )Z u , the upper-case letter such as ( )Z u will 

refer to a random variable at location u . The set of possible outcomes of the random variable is denoted 

as{ , 1, 2,..., }k k K= . Then, the probability of one category k to exist at location u is expressed as a 

probability:
  

( ; ) { ( ) }p k prob Z k= =u u
                                                                   

(1) 

The aim is to give a more accuracy and precise estimation for ( ; )p ku . For example, given category 

number with no other prior information, we can use the uniform distribution (least information 

probability) as the estimation, which will be: 1( ; )p k
K

=u . More practically, we have some global 

information for the probability of the category k to prevail at location u , will be ( ; )p ku and denoted as:

( ; ) ( )kp s p k=u . If more information are given, such as the outcomes of the related surrounding 

neighboring locations, denoted as { ( ) , 1,..., }Z z nα α α= =u or {( )}n , the probability distribution 

function as expressed in (1) will be updated to a posterior probability, which is called conditional 

probability and can be written as: 

0 1 2 0 0
( | , ,... ) { ( ) | ( ) , 1,..., }

n
p prob Z z Z z nα α α= = = =u u u u u u                               (2)  

In equation(2),
 
the lower case 0 1{ , ,..., }nz z z are the outcomes of the random variables

{ ( ) , 0,1,..., }Z z nα α α= =u , which are [1,2,... ], 1,...,z K nα α∈ = . 

Based on the conditional probability definition, the probability 
0 1 2( | , ,..., )

n
P u u u u can be calculated from 

the multivariate probability as: 

0 1 2
0 1 2

1

( , , ,..., )
( | , ,..., )

( ,..., )

n
n

n

P
P

P
=

u u u u
u u u u

u u

                                                      (3) 

In geostatistics, characterization of uncertainty about a spatially distributed phenomenon on the 

unsampled location is done through conditional simulation on the univariate cumulative distribution 

function as in equation(2). More over from the view of information gaining, we are more interested in 

estimating the conditional probability based on the neighboring data as expressed in equation (2) because 

it will provide more informative estimation for specific location after obtaining some surrounding 
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locations information. Thus, the inference of this conditional probability distribution is the central 

problem of geostatistics.  

 There are several established and new development approaches to infer the conditional 

probability directly or indirectly, such as indicator kriging or multiple point geostatistics. In indicator 

kriging approach (Goovaerts, 1994; Journel, 1983), the conditional probability multivariate probability is 

calculated as a linear combination of indicator data: 

0 0 1 1 0 0

1

( | ,..., ) ( | )
n

n n i i i

i

P z z z P z zλ
=

= = = = = =∑u u u u u                                   (4) 

The weights characterize the dependence between the sampled locations iu and the information from 

sampled locations to unsampled location. The weights iλ are estimated by indicator kriging (IK) based on 

the indicator covariance.  

 Theoretically, the conditional probability can be calculated from equation(3), the numerator is an 

n+1 variates multivariate probability, while the denominator is the n-variates marginal probability of this 

n-variates multivariate probability. In the multipoint statistics approach, the required n+1 variate 

multivariate probability is constructed from a training image. Then, the required conditional probability in 

expression (3) can be calculated by just counting the relatively states number occurred in the training 

image: 

 

0 0 1 1
0 0 1 1

1 1

( , ,..., )
( | , ..., }

( ,..., )

n n

n n

n n

Count z z z
P z z z

Count z z

= = =
= = = =

= =

u u u
u u u

u u

                     (5) 

The new developed DMPE approach estimate the conditional probability by estimate the multivariate 

probability, which is the numerator in equation(3), from the bivariate marginal. In this approach, in this 

algorithm, the bivariate marginal probabilities are imposed to an initial multivariate probability as the 

constraints and satisfied by iteratively modifying the multivariate probability. And also in DMPE, the lower 

marginal probabilities are used as a tool to characterize the information and the redundancy between the 

sampled locations and the unsampled location.   

 The theory of all these three methods is not the main point of this paper. The details of indicator 

kriging approach were written in details in paper (Deutsch, 2006; Goovaerts, 1994; Journel, 1983). The 

multiple-point approach can be found in(Liu, 2006; Ortiz and Deutsch, 2004; Strebelle, 2002; Wang, 1996).  

The details of the new developed DMPE approach was given in the paper in this report.  In this paper, the 

estimation results were compared from the informative point between those two mature approaches and 

the newly developed approach DMPE (Direct Multivariate Probability Estimation). 

 

Spatial statistics for those three methods 

In this research, the main point is given an objective comparison with the aim of algorithm improvement. 

To make a very good estimation, there are many practical details for anyone of them. In order to exclude 

the practical issue such as variogram model construction, all the spatial statistics are inferred from the 

same multivariate probability that is obtained by scanning the training image with certain data 

configuration.  

 

Multivariate probability from training image 

Given N categorical random variables, and assuming each of them may have K categories

{ 1, 2,..., }k K= outcomes, these N  random variables will form a multivariate probability 

1 2( , ,..., )mv NP u u u which is defined as: 

1 1( ,..., ) ( ( ),..., ( ));   1,...,
mv N N

P prob Z Z Nα= =u u u u
                                     

(6) 

Later, the notation of 
1 2

( , ,..., )
mv N

P u u u  will refer to the multivariate probability mass function, while

1 2( , ,..., )mv Np z z z will refer to one probability state, which represents the probability of a specific 

configuration of category ( 1,..., , 1,..., )z k with k K Nα α= = =  existing at locations 1 2, ,..., Nu u u . Totally, 

the probability states number will be
N

K . In this research, the original multivariate probability is obtained 



from scanning a training image with certain data configuration. The training image can be any 

categorical variables distribution map which can represent the heterogeneities characters in the spatial 

space that the geologist expect to see in the research area. It is used most often in multiple point statistics. 

From this training image, under the stationary assumption, the 

scanning the data event from the training image.

1 1 2 2
( , , ..., }P z z z= = = =u u u

The expression(7) characterizes the joint uncertainty about the 

satisfy the constraint of:
1 2

( , ,..., ) [0,1]
mv N

p z z z

 

Transition Probability from multivariate probability

Knowing the multivariate probability, the related 

through the multivariate probability

probability as ( , 1,..., )P z n= =u
ℓ ℓ

ℓ

P z z i j N i j

can be calculated from the multivariate probability as:

( , ; , ) ( ; 1,..., , 1,..., )i j i jP z z P z n z K= = = =u u u

The bivariate marginal probability satisfy 

For any two random variables ( , ; , 1,...., , )u u

matrix which is also called transition probability matrix. For example, if there are 3 locations with possible 

3 categories in all the locations, there will be 27 possible multivariate states 3 transition probability 

matrices as shown in Figure 1. 

 

Figure 1 Diagram of multivariate probability and the related bivariate marginal probability

multivariate probability states are shown as a green point in the space. The bivariate probabili

between random variable u2 and u3

circle, the bivariate between u1 and u2 is not shown in this figure).

For the multivariate probability distribution

Assuming three facies can be exit at 100 grid locations, the probability spatial space will be 

a huge number. Thus, it is a big challenge to save and retrieve it in the estimation process. 

lower order marginal distribution has a lower stationary requirement and can be easily obtained. 
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from scanning a training image with certain data configuration. The training image can be any 

categorical variables distribution map which can represent the heterogeneities characters in the spatial 

space that the geologist expect to see in the research area. It is used most often in multiple point statistics. 

er the stationary assumption, the N point statistics will be retrieved by 

scanning the data event from the training image. 

1 1 2 2
1 1 2 2

1 2

( , ,..., )
( , ,..., }

( , , ..., )

n N
N N

N

Count z z z
P z z z

Count

= = =
= = = =

u u u
u u u

u u u
                         

characterizes the joint uncertainty about the N actual values 1,...,z z

1 2
( , ,..., ) [0,1]

mv N
p z z z ∈

   
and  

1 2

1

( , ,..., ) 1

NK

mv Np z z z =∑
. 

Transition Probability from multivariate probability 

the multivariate probability, the related any lower order marginal probability can be calculated 

multivariate probability marginalization. For example, denote the n variate multivariate 

( , 1,..., )P z n , the second order marginal or bivariate marginal probability

( , ; , ), , 1, 2,..., ,i j i jP z z i j N i j= ≠u u
 

can be calculated from the multivariate probability as: 

& ;

( , ; , ) ( ; 1,..., , 1,..., )

i i j j

All
with z z i j

P z z P z n z K

= = ≠

= = = =∑
u u

u u u
ℓ ℓ ℓ

ℓ

ℓ

The bivariate marginal probability satisfy 0 ( , ; , ) 1i j i jP z z≤ ≤u u and

1 1

( , ; , ) 1
i j

K K

i j i j

z z

P z z
= =

∑∑ u u

( , ; , 1,...., , )
i j

i j N i j= ≠u u , this bivariate probability will be a 

matrix which is also called transition probability matrix. For example, if there are 3 locations with possible 

3 categories in all the locations, there will be 27 possible multivariate states 3 transition probability 

 
multivariate probability and the related bivariate marginal probability

multivariate probability states are shown as a green point in the space. The bivariate probabili

between random variable u2 and u3 are shown as a red and those between u1 and u3 are shown as 

the bivariate between u1 and u2 is not shown in this figure). 

the multivariate probability distribution 1 2( , ,..., )MV NP u u u , there are totally 
NK  

ssuming three facies can be exit at 100 grid locations, the probability spatial space will be 

a huge number. Thus, it is a big challenge to save and retrieve it in the estimation process. 

lower order marginal distribution has a lower stationary requirement and can be easily obtained. 
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from scanning a training image with certain data configuration. The training image can be any kinds of 

categorical variables distribution map which can represent the heterogeneities characters in the spatial 

space that the geologist expect to see in the research area. It is used most often in multiple point statistics. 

point statistics will be retrieved by 

( , ,..., )

                         

(7) 

,..., Nz z . It should 

can be calculated 

variate multivariate 

second order marginal or bivariate marginal probability 

( , ; , ) ( ; 1,..., , 1,..., )                       (8) 

( , ; , ) 1
i j i j

P z z = . 

, this bivariate probability will be a K K×

matrix which is also called transition probability matrix. For example, if there are 3 locations with possible 

3 categories in all the locations, there will be 27 possible multivariate states 3 transition probability 

multivariate probability and the related bivariate marginal probability (All the 

multivariate probability states are shown as a green point in the space. The bivariate probabilities 

those between u1 and u3 are shown as blue 

 possible values. 

ssuming three facies can be exit at 100 grid locations, the probability spatial space will be 
1003  , which is 

a huge number. Thus, it is a big challenge to save and retrieve it in the estimation process. While, the 

lower order marginal distribution has a lower stationary requirement and can be easily obtained. In DMPE 
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approach, the transition probability is used to reconstruct the original multivariate probability. Thus, the 

conditional probability can be calculated directly from equation(3).  

 

Covariance from Transition probability 

In indicator kriging approach, indicator covariance, which is a bivariate statistics, is used to characterize 

the spatial relationship. While in DMPE, the transition probability is used. In this part, it will show that the 

covariance can be inferred from the transition probability with some simplicity assumption. This point will 

ensure that the differences of conditional probability estimation for unsampled location only come from 

the algorithm itself.   

In indicator kriging approach, a categorical random variable is always transformed to a binary indicator 

variable. For a categorical variable Z(u), the indicator variable for category k is defined as:  

( )
1,

; 1,...,
0,

if k exist at location
I k k K

otherwise


= =


u
u                                           (9) 

The indicator covariance model is usually given by indicator variogram model, which is a measure of the 

spatial correlation between every two locations. In stationary assumption, the indicator variogram 

( );I kγ h for an indicator variable at two locations with departure distance of h is defined as: 

( ) [ ]{ }2
2 ; ( ; ) ( ; ) , 1,...,I k E I k I k k Kγ = − + =h u u h

                              
(10) 

From indicator variogram calculation as in equation(10), the indicator variogram of category k will only 

count those categorical transitions that category k  changes to other categories from the one location to 

the other location.  From previous session, the bivariate transition probability between any two 

categories is defined as: 

( ); , ' ; , ' 1,...,p k k k k K=h  

Thus, for each indicator variogram, it summarizes these 2(K-1) different bivariate transition probabilities 

(Deutsch, 2005). 

( ) ( ) ( )
' 1 ' 1
' '

2 ; ; , ' ; ',
K K

k k
k k k k

k p k k p k kγ
= =
≠ ≠

= +∑ ∑h h h

                                              

(11)  

For example, for three categories ( 1, 2,3k = ), the indicator variogram and the transition probability 

have the relationship as: 

2 ( ;1) ( ;1, 2) ( ;1,3) ( ;2,1) ( ;3,1)

2 ( ;2) ( ;2,1) ( ;2,3) ( ;1, 2) ( ;3, 2)

2 ( ;3) ( ;3,1) ( ;3, 2) ( ;1,3) ( ;2,3)

p p p p

p p p p

p p p p

γ

γ

γ

= + + +


= + + +
 = + + +

h h h h h

h h h h h

h h h h h

                                 (12) 

With the asymmetric assumption ( ( ;1,2) ( ;2,1)p p=h h  and ( ;1,3) ( ;3,1)p p=h h ) and the quality of 

transition probability matrix ( 1( ;1,1) ( ;1,2) ( ;1,3)p p p p+ + =h h h ): 

( ;1) ( ;1,2) ( ;1,3) (1) ( ;1,1)

( ;2) ( ;2,1) ( ;2,3) (2) ( ;2,2)

( ;3) ( ;1,3) ( ;2,3) (3) ( ;3,3)

p p p p

p p p p

p p p p

γ

γ

γ

= + = −


= + = −
 = + = −

h h h h

h h h h

h h h h

                                                (13) 

Where 1p is the univariate probability for category one. Based on the relationship of
1 1 1
( ) (0) ( )C C γ= −h h , 

from equation(12) and(13), the indicator covariance for category 1 can be calculated from the transition 

probability as: 

1 1 1 11

1 1 1 11

11 1 1

( ) (0) ( )

(1 ) ( )

( )

C C p p

p p p p

p p p

= − +

= − − +

= −

h h

h

h i

                                                (14) 

It is the same for category two and three.  The indicator covariance can be calculated from equation(14) 

given a transition probability matrix, and used in the simple indicator kriging directly. 
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The comparison criteria 

The conditional probability 
0 1 2( | , ,... )

n
p u u u u for a given data event can be calculated from full 

multivariate probability, DMPE or from indicator Kriging.  For comparison purposes, it is helpful to have a 

quantitative measurement to say how informative of an estimation is given the conditioning data. In 

other words, it is necessary to quantitatively evaluate how much uncertainty has been reduced regarding 

of this estimation for the unsampled location? 

 The information content is related to the conditional probability
0 1 2( ; | , ,... )np ku u u u . Say, if

0 1 2( ; | , ,... ) 1np k =u u u u , it is certain that at location 0u is category k given the categories at the 

surrounding locations 1 2( , ,... )nu u u , therefore this estimation is very informative on unsampled location. 

Similarly for the case when 0 1 2( ; | , ,... ) 0np k =u u u u . it is certain that k  is not going to happen given 

the situation at the surrounding locations, hence 0 1 2( ; | , ,... ) 0np k =u u u u  is also very informative 

estimation on unsampled location. Conversely, if 0 1 2
1( ; | , ,... )

n
p k

K
=u u u u it is not certain which 

category is going to happen on unsampled location, hence the information content of this estimation 

reaches the minimum.  In more practical case, we have some prior information about category k , say, its 

global proportion ( ; ) ( )kp s p k=u then the lowest informative estimation should be shifted the point 

where 0 1 2( ; | , ,... ) ( )np k p k=u u u u   

 Based on this understanding, we can make a generalized definition of informative strength 

function eω for the estimation satisfying the following conditions(Liu, 2005): 

(1). [0,1]eω ∈ and eω  is a function of estimation 0 1 2{ ( ; | , ,... )}e nf p kω = u u u u ; 

(2). 1eω → when 0 1 2( ; | , ,... )np ku u u u is most informative ( 0 1 2( ; | , ,... ) 1 0np k or→u u u u ); 

(3). 0eω → when B is not informative ( 0 1 2
1( ; | , ,... ) ( )

n
p k or p k

K
→u u u u ); 

(4). eω decrease within 1[0, ] [0 ( )]or p k
K

and increase within 1[ ,1] [ ( ),1]or p k
K

 moronically; 

 

Linear informative strength definition 

Given sampled around locations, the posterior probability (the estimated conditional probability 

distribution for unsampled location) will be 0 1 2( ; | , ,... )np ku u u u , which will bring more information 

regarding to the prior probability ( )p k (Global proportion). The informative strength eω can be defined 

as a linear function (Liu, 2005): 

0 1 2
0 1 2

1 2

0 1 2
0 1 2

( ; | , ,... ) ( )
( ; | , ,... ) ( )

1 ( )
( ; | , ,... )

( ) ( ; , ,... | )
( ; | , ,... ) ( )

( )

n
n

e n

n
n

p k p k
if p k p k

p k
k

p k p d
if p k p k

p k

ω

−
≥ −

= 
− <



u u u u
u u u u

u u u u
u u u u

u u u u

(15) 

Figure 2 is an example of informative strength function given different prior probabilities.  
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Figure 2 linear informative strength function given three different univariate marginal probabilities 

 

Non-linear informative strength definition 

In the information theory(Cover and Thomas, 2006), the uncertainty of knowledge is measured by 

entropy ( )H X . The entropy of a random variable X with a probability mass function ( )p x  is defined as: 

( ) ( ) log( ( ))
x

H X p x p x= −∑                                                                      (16) 

The more unpredictable, the higher it’s entropy. The entropy reaches its maximum value when X is 

uniformly distributed, corresponding to minimum informative estimation. It reaches the minimum value 

when there is no uncertainty about X, i.e. X happens with probability 1 or 0.  

Consider the categorical random variable u is defined on a spatial domain such that all possible outcomes 

of ( ; 1,..., )k k K=  is the equal probability 0 1 2
1( ; | , ,... )

n
p k

K
=u u u u . The entropy ( )eH u will be: 

1

1 1
( ) ln( )

1
ln( )

ln

K

e

k

H
K K

K

K

=

= −

= −

=

∑u

                                                                 

(17)

 

With these uniform probabilities, ( )eH u is the upper bound for the average entropy with lowest 

informative estimation 0 1 2( ; | , ,... )np ku u u u on the unsampled location. Thus, the uniform probability 

is called least informative probability. Practically, one more information resource is the global proportion 

of each category ( ), 1,...,p k k K= . Based on this the average entropy would be: 

1

( ) ( ) ln ( )
K

e

k

H p k p k
=

= −∑u i

                                                            

(18) 

After some conditioning data are obtained, the estimation for unsampled location is updated from the 

global proportion to a posterior probability distribution denoted as 1 2( ; | , ,... )np ku u u u , for the 

conditional probability distribution for one unsampled location, the local entropy would be: 

1 2 1 2 1 2

1

( | , ,... ) ( ; | , ,... ) ln( ( ; | , ,... )
K

e n n n

k

H p k p k
=

= −∑u u u u u u u u u u u ui           (19) 

This new entropy 1 2( | , ,... )e nH u u u u  will always be less than ( )eH u , says that knowing more 

informative can only reduce the uncertainty. That is: Information can’t hurt (Cover and Thomas, 2006). 

But it is still need to say how much of uncertainty is reduced after gaining the new information resource. 

In Bayesian statistics the KL divergence is used as a measure of the information gain in moving from a 

prior distribution to a posterior distribution. KL divergence also called relative entropy or Kullback-Leibler 

distance (KL distance). For a random variable X , with the probability mass functions ( )p x and ( )q x , KL 

distance is defined as: 
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( )
( || ) ( ) ln

( )x

p x
D p q p x

q x
=∑

                                                             

(20) 

In the above definition, 00 ln( ) 0
0

=i , 00 ln( ) 0
( )q x

=i and
( )

( ) ln( )
0

p x
p x = ∞i . 

It is shown that ( || )D p q is always nonnegative and is zero if and only if ( ) ( )p x q x= . In information 

theory, KL distance is used to say how many expected number of bits would have added to the message 

length by using the original code based on ( )q x  instead of using a new codes based on the ( )p x (Cover 

and Thomas, 2006).  

If the ( )p x in equation(20) is the conditional probability 0 1 2( ; | , ,... )np ku u u u and ( )q x is the prior 

probability ( )p k , this therefore represents the amount of useful information, or information gaining, 

about location 0u  after upgrading the estimation from the global proportion to conditioning probability. 

The KL distance will be:

  

0 1
0 1 0 1

1

0 1 0 1 0 1

0 1 0 1 0 1

( ; | ,..., )
( ( ; | ,..., ) || (1 )) ( ; | ,..., ) ln{ }

(1 )

{ ( ; | ,..., ) ln{ ( ; | ,..., )} ( ; | ,..., ) ln(1 )}

( ; | ,..., ) ln( ) { ( ; | ,..., ) ln( ( ; | ,..

K
n

n n

k

n n n

k

n n

k

p k
D p k K p k

K

p k p k p k K

p k K p k p k

=

=

= −

= +

∑

∑

∑

u u u
u u u u u u

u u u u u u u u u

u u u u u u u u

0 1 0 1

1

., ))}

ln( ) { ( ; | ,..., ) ln( ( ; | ,..., ))}

( ) ( | ,..., )

n

k

n n

k

e e n

K p k p k

H H

= +

= −

∑

∑

u

u u u u u u

u u u u

(21) 

The larger the distance is, the better the informative, the greater our uncertainty reduced on the 

unsampled location. So the KL distance D can be used as a measure to show how the informative the 

estimation is after upgrading from a prior probability to posterior probability. The lower bound will be 0, 

when using the least informative probability as the estimation. The maximum will be 1 when there is no 

uncertainty for each category.  

 It is interesting to show that the distance to the least informative probability distributions for 

binary random variable. At this case, let the logarithms to base 2, the equation(21) will be: 

0 1 2 0 1

0 1 2 0 1

0 1 2 0 1

( ( ; | ... ) || (1 )) log (2) ( | ,..., )

1 ( ; | ,..., ) log ( ( ; | ,..., ))

(1 ( ; | ,..., )) log (1 ( ; | ,..., ))

n n

n n

n n

D p k K H

p k p k

p k p k

= −

= +

+ − −

u u u u u u

u u u u u u

u u u u u u

          (22) 

The above distance satisfies the previous informative strength function eω requirements. When the 

probability distribution 0 1( ; | ,..., )np ku u u  approaches to the uniform distribution, the informative 

strength is decreasing, and it increases when 0 1( ; | ,..., )np ku u u is farther away from the uniform 

distribution. On both sides, the informative strength eω monotonically increases or decreases. 

For binary variable, when the prior global probability ( ), 1,...,p k k K=  is given, the lowest point in the 

informative strength function should be ( ), 1,...,p k k K= , the equation (22) will be modified as: 

0 1 0 1 2 0 1

0 1 2 0 1

( '( ; | ,..., ) || ( )) 1 '( ; | ,..., ) log ( '( ; | ,..., ))

(1 '( ; | ,..., )) log (1 '( ; | ,..., ))

n n n

n n

D p k p k p k p k

p k p k

= +

+ − −

u u u u u u u u u

u u u u u u
   (23) 

With 

0 1
0 1

0 1

0 1
0 1

( ; | ,..., )
'( ; | ,..., ) ( )

2 ( )
'( ; | ,..., )

( ( ; | ,..., ) 2 ( ) 1)
( ; | ,..., ) ( )

2(1 ( ))

n
n

n

n
n

p k
if p k p k

p k
p k

p k p k
if p k p k

p k

 ≤


= 
− + >

−

u u u
u u u

u u u
u u u

u u u

 

Figure 3 are some non-linear informative strength function curves.  
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Figure 3 Non-linear informative strength curves given different global marginal probabilities (Left: the 

binary variable without knowing the univariate probability; Right: after obtaining the univariate 

probability, the lowest informative strength should shift to the univariate marginal) 

 

There are also some other established approach approaches to compare models, such as cross validation 

and jackknife. In cross validation, data are left out one at a time and re-estimated from the surrounding 

data.  In the jackknife, a separate set of validation data are held back from the very beginning and only 

used at the end for checking. More details can be found in (Deutsch, 1999; Goovaerts, 1997). 

 

Comparison methods and comparison results 

Because the data configuration will have a sever effect on the estimation results, all efforts should be 

taken to make sure our comparison is representative. Based on the previous session the following 

comparison workflow as shown in Figure 4 is adopted. 

 
Figure 4 three algorithm comparison workflow 

 

The data configuration as shown in Figure 4 is composed by 6 locations. Sampled data locations are

2 3, ,
1

u u u , 4u and 5u . The location 0u  is unsampled and moving in the data configuration window (10 by 

10 grids). Totally, there will be 95 data configurations comparison. The first step is multivariate probability 

construction which is based on equation(7). Along the red arrow, the transition probability is calculated 

according equation(8). For indicator Kriging approach, the indicator covariance is coming from transition 

probability based on(11). 

 

The first comparison could be using the traditional cross validate approach. Using 500 locations in the 

training image as the crosscheck location, the accuracy plots with those three approaches are plotted in 

Figure 5. It shows that the DMPE estimation is better than SK approach for depicting the heterogeneity of 

this training image. 
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Figure 5 the accplt with different estimation approach 

 

From the view of uncertainty, this improvement can be quantitively measured. The linear function of the 

informative strength eω for each category , 1, 2 3k k and= is plotted in Figure 6. As shown in Figure 6, 

the informative strength order for category 1 and 3 is ( ) ( ) ( )e e eMV DMPE IKω ω ω> > ; for category 

2 is ( ) ( ) ( )e e eMV IK DMPEω ω ω> > .  

 
Figure 6 Line Informative Strength comparisons for three categories with different estimation approaches 

 

The informative strength measured by the non-linear approach is shown in Figure 7. 

 
Figure 7 the non-linear uncertainty decreasing using different estimation approaches (Left: entropy; Right: 

KL distance) 

From the KL distance, we can calculate how the estimation is improved from the view of uncertainty 

reduction. The maximum improvement of informative strength ( ) ( )e eDMPE IKω ω− is 10.6%, the 
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minimum of ( ) ( )e eDMPE IKω ω− is 4.5%; on average, it is 6.4%. From the informative strength 

criteria, the estimation improvement on the uncertainty reduction from DMPE is larger than IK, which will 

encourage a widely application of this new algorithm in the future. 

 

Discussion 

Although the multiple point approach has the best informative strength, it is difficult to get enough 

replications for stable higher order multivariate probabilities because of the huge state space.  The 

stationary assumption in multiple point geostatistics may also cause some difficulty.  For IK approach, the 

linear probability combination approach may not result in models that show the appropriate level of 

spatial detail as the results shown in this research. It has the minimum informative strength to the 

unsampled location. The advantage is its computational speed.  While for DMPE, the lower marginal 

probabilities in DMPE will have minimal stationary requirement and the nonlinear combination will be 

more appropriate in many cases. It will give better informative estimation than IK approach.  The spatial 

statistics tool in DMPE is the transition probability which could be obtained from a training image or 

vertical profile.  Inference of three dimensional transition probabilities is problematic and CPU 

requirements are large. 
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