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A Sensitivity Analysis for Equivalent Permeability Tensors 

Calculated from 2D Discrete Fracture Networks 
 

Eric B. Niven and Clayton V. Deutsch 

 

In practice, most current approaches for flow simulation of naturally fractured reservoirs rely on the 

continuum approach. This requires calculation of equivalent grid based permeability tensors from a 

discrete fracture network. This research reviews one such popular method for calculation of equivalent 

permeability. The effect of fracture length and density on the equivalent permeability of the fracture 

network is investigated. The box counting algorithm is used to determine the fractal dimension of the 

fracture network and its relationship with fracture network permeability is investigated. Finally, an 

experimental design approach is used to determine the discrete fracture network parameters that are 

most influential on the calculated equivalent permeability tensor. It is shown that fracture aperture is the 

most influential parameter in determining the equivalent permeability tensor. 

 

Introduction 

Research shows as much as 60% of the world’s petroleum reserves are known to be in naturally fractured 

reservoirs (NFRs) (Waldren and Corrigan 1985, Beydoun 1998, Roxar 2009). As most convenient and 

economical reserves decline, producers are increasingly turning toward non-traditional sources of 

petroleum such as oil sands and NFRs. 

 Most current approaches for flow simulation of NFRs rely on either the continuum or the discrete 

fracture network (DFN) approach. Under the DFN approach flow is simulated directly on the fractures 

allowing incorporation of many of the characteristics of real fracture systems. Although the DFN approach 

can handle complex fracture geometry, its use has typically been limited to basic flow calculations and 

assumes zero permeability matrix rock. The continuum approach has seen far more use in actual practice. 

Under the continuum approach, the flow on fractures is not directly simulated. Instead, the field is 

represented by grid blocks and an equivalent permeability is calculated for each one. The continuum 

approach has the advantage that it can simulate complex recovery mechanisms such as capillary pressure 

and matrix-fracture interactions.  

 One approach to calculate an effective permeability tensor is based upon fininte-element 

simulation (Clemo and Smith 1997). For this approach, the discrete fractures in the DFN are discretized 

into a finite-element mesh. Then boundary conditions are specified on opposite faces of a box grid cell 

and no flow boundary conditions are imposed on the remaining faces. The steady-state flow through the 

box is calculated and used to derive an equivalent permeability based on Darcy’s Law.  This approach has 

the advantage of being able to account for fracture network connectivity but is sensitive to many 

assumptions that must be made for the flow simulation. One of the most popular methods for calculating 

an equivalent permeability tensor is that of Oda (1985). Oda’s approach has the advantage that it is fast 

and does not require flow simulation and can obtain effective properties for grid cells based directly on 

the geometry and properties of the fractures within those cells. However it does not take fracture 

connectivity into account and is limited to well-connected fracture networks. 

 This study reviews Oda’s (1985) approach for calculating equivalent permeability for input into a 

continuum flow simulator and performs a sensitivity study that determines the factors that are most 

influential on the equivalent permeability using an experimental design approach. 

 

Oda’s Method for Calculating an Equivalent Permeability Tensor 

The continuum approach, where fracture permeability is represented by an equivalent permeability grid, 

works well when the rock mass has a sufficient amount of randomly oriented and interconnected 

fractures (Lee et al. 1995, Barla et al. 2000). In this case, Darcy’s law can be used to calculate the seepage 

velocity as follows: 
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Where g is gravitational acceleration, υ  is the kinematic viscosity and jJ  is / jxφ−∂ ∂ . 

The Oda approach lays a specified grid on top of a DFN and derives effective properties based on the 

fractures contained in each cell.  The orientation of fractures in each grid cell is specified as a unit normal 

vector n. Integrating the fractures over all of the unit normals N, Oda obtains the mass moment of inertia 

of fracture normals distributed over a unit sphere: 
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Where N is the number of fractures in Ω , 
i

n  and 
jn  are the components of a unit normal to the 

fracture n, E(n) is the probability density function that describes the number of fracture whose unit 

vectorsrs n are oriented within a small solid angle dΩ  and Ω  is an entire solid angle corresponding to 

the surface of a unit sphere. 

 Now, assuming that the flow in a joint is laminar, the so called parallel plate assumption is usually 

made. That is, the flow within a joint is modeled as the flow between two parallel plates with a separation 

equal to the fracture aperture. The flow between two parallel plates is: 
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Where e is the fracture aperture and µ  is the dynamic viscosity of the groundwater and P∇ is the 

pressure gradient. 

Oda (1985) calculates a crack tensor as follows: 
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Where V is the volume of the cell, l is the length of the fracture and 
ik

n and 
jkn  are the components of a 

unit normal to the fracture k. Note that equation (4) calculates the crack tensor for the 2D case where 

fractures are represented by lines (e.g. fracture traces on a 2D surface). Then, Oda’s permeability tensor is 

derived from Pij by assuming that Pij expresses fracture flow as a vector along the fracture’s unit normal. 

Assuming that fractures are impermeable in the direction parallel to their unit normal, Pij must be rotated 

into the planes of permeability as follows: 
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Where 
ijk  is the permeability tensor, 

ijδ  is the Kroenecker delta and 
11 22kk

P P P= + . 

The permeability tensor is symmetric and can be decomposed into eigenvalues and eigenvectors. The 

eigenvectors represent the principal directions of permeability and the eigenvalues represent the 

magnitudes of the permeability in the corresponding principal direction.  Two FORTRAN programs 

(EQUIVPERM2D and FRAC_EQUIV_PERM) have been constructed to calculate an effective permeability 

tensor from a discrete fracture network in either two or three dimensions. 

 

Generation of Fracture Networks 

The domain or area of interest for this study is a single 2D grid block that is 100 m in length and width. A 

number of 2D fracture networks were generated for this study. Each fracture network is composed of 

linear fractures with a centre, length, orientation (defined by dip direction) and aperture. The fracture 

centre locations are distributed randomly within the 2D grid block. The fracture length, density and 

aperture are considered as categorical variables. Fracture length is 20, 40, 60 or 80 m, fracture density is 

50, 100, 150, 200 or 250. For the preliminary analysis, fracture aperture is kept as a constant (0.10 mm). 

Fracture orientation was considered by creating two fracture sets, one set had north-south and east-west 

striking fractures and another had northwest-southeast and northeast-southwest striking fractures. Figure 

1 shows an example fracture network for the case with N/S and E/W striking fractures and a fixed length 

of 20 m. In total 40 data sets were created for this analysis, however, only the N/S and E/W striking 
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fracture sets are presented here, reducing the number of data sets to 20 (every combination of length and 

density are tested here). 

 

Preliminary Analysis of Results 

In total, 20 scenarios with differing fracture parameters noted above were considered for preliminary 

analysis. For each of the 20 fracture sets, the equivalent permeability tensor was calculated along with the 

fracture network’s fractal dimension using the box-counting technique. 

 Natural fracture patterns show fractal behavior (Babadagli 2001, Stach et al. 2001). A fractal is a 

rough or fragmented geometrical shape that can be split into parts, each of which is (at least 

approximately) a reduced-size copy of the whole. The fractal dimension of the same fracture network can 

be estimated using various techniques such as box counting, sandbox and scanline. Each technique yields 

different results since they each measure different fractal characteristics (Babadagli 2001). However, for 

this article, only the box-counting technique is considered. In general, the higher the fractal dimension 

that is measured, the more complex and dense the fracture network is. 

 The box counting method for determining fractal dimension is a standard technique proposed to 

quantify the spatial distribution of irregular objects (Mandelbrot 1982). In this method, a box size is 

selected. Then boxes with that size are laid over the domain of interest. Then the number of boxes of that 

size that contain fractures are counted. This process is repeated for various box sizes. The number of 

boxes containing fracture lines vs. box sizes is plotted on a log-log scale and the slope is the fractal 

dimension. The following equation shows the relationship between box size, fractal dimension and the 

number of boxes containing fractures: 

 ( )
D

N r r
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Where N(r) is the number of boxes of size r containing fractures, r is the box size and D is the fractal 

dimension. 

 Figure 2 through Figure 4 show the relationship between fracture length, density and fractal 

dimension and grid block equivalent permeability. Note, only the results using permeability in the x-

direction are shown to save space. As is shown in the figures, the equivalent permeability increases with 

increases in each parameter. Figure 2 shows a near-linear relationship between fracture density and 

permeability. In fact, the relationship between fracture density and equivalent permeability is linear due 

to the method used to calculated it with Equation (4). Any deviation from linearity shown in Figure 2 is 

due to minor differences in the number of E/W vs. N/S fractures since only E/W fractures contributed to 

equivalent permeability in the x-direction using Oda’s method. Figure 3 shows a perfectly linear 

relationship between fracture length and equivalent permeability, which is expected given the linear 

relationship between fracture length and crack tensor in equation (4). Figure 4 shows the relationship 

between fractal dimension calculated using the box-counting technique and effective permeability in the 

x-direction for various fracture lengths. In general, there is a very predictable relationship between fractal 

dimension and calculated effective permeability using Oda’s method. 

 

Sensitivity Analysis Using Experimental Design 

In order to perform a sensitivity analysis to determine the relative importance of fracture network 

properties an experimental design technique was applied. The experimental design technique can also 

capture the effect of interaction of variables. The full-factorial and fractional-factorial designs are often 

used where the objective of the study is to determine which variable has the largest impact on the result 

of the process. In this analysis only two levels of each variable are considered. 

 

Sensitivity Analysis 1 

In this study, four variables are considered (length, density, orientation and aperture) for two level full-

factorial design. Optimistic and pessimistic values for each variable were selected and are shown in Table 

1, respectively. For length, density and aperture the optimistic value is twice the pessimistic value to 

minimize the influence of the value of the variable on the response. The orientation of the fractures refers 

to the strike of the fracture in degrees from north. Both the pessimistic and optimistic orientation 

scenarios are for orthogonal fracture sets. Fractures oriented in the NW/SE-NE/SW direction are 
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considered optimistic. This is because, under Oda’s method, all fractures in the NW/SE-NE/SW case 

contribute to equivalent permeability in the x-direction. However, for fractures in the N/S-E/W directions, 

only the fractures in the E/W direction actually contribute to permeability in the x-direction. 

 All sixteen combinations of possible optimistic and pessimistic data are used in the experimental 

design. Each individual variable is considered: length, density, orientation and aperture (L, D, O, A, 

respectively). In addition, the interaction between the variables is also considered with all possible 

combinations such as: LD, LO, LA, DO, DA, OA, LDO, LDA, DOA, LOA and LDOA. 

 The factor effect shows the influence of each variable (or combination of variables) on the 

response of the experiment (here the response is the effective permeability calculated using Oda’s 

method). The factor effect is calculated as follows: 

 F.E.=Avg.responseat one level Avg.response at second level−  (7) 

For example, there are sixteen runs in total for sensitivity analysis 1. There are eight runs using a length of 

40 m and 8 runs using a length of 80 m. The average equivalent permeability using 40 m length is 

subtracted from the average equivalent permeability using 80 m length to obtain the factor effect. A 

Pareto chart showing the relative influence of each parameter and their interactions is shown in Figure 5. 

As is shown in the figure, fracture aperture has the biggest influence on the calculated effective 

permeability by far. The factors with the next biggest influence are length and density. Fracture 

orientation plays an even smaller role than length and density. This result is not surprising since the 

permeability of a fracture is related to the cube of aperture and only linearly to length and density (see 

Equation (4)). This result appears to contradict those of Jafari and Babadagli (2009) who conduct a similar 

sensitivity analysis. However, Jafari and Babadagli use optimistic values that range between 1.5 and 5 

times their pessimistic values and study the effect of fracture conductivity instead of fracture aperture. 

For example, in a similar sensitivity analysis Jafari and Babadagli use values of fracture conductivity of 

1000 and 1500 mD for their pessimistic and optimistic cases. However, since the conductivity of a fracture 

is related to the cube of fracture aperture, the difference between their pessimistic and optimistic 

conductivity is analogous to a pessimistic and optimistic fracture aperture of 0.100 and 0.114 mm, 

respectively. Since distributions of fracture aperture are difficult to define in practice, a larger difference 

between pessimistic and optimistic fracture apertures was used in this study. 

 

Sensitivity Analysis 2 

The second sensitivity analysis was conducted using the same data as the first sensitivity analysis except 

that the orientation of the fractures was changed. For this analysis, the pessimistic scenario is two 

fracture sets with a strike of 10 and 170 degrees from north, respectively. The optimistic scenario is two 

fracture sets with a strike of 80 and 100 degrees from north, respectively. Recall, that the sensitivity study 

considers the factor effect on the effective permeability in the x-direction (along a strike of 90 degrees). 

The results are shown in Figure 6 as a Pareto chart. In this case, fracture orientation is the most influential 

factor followed by aperture. The reason for this is that there is a very high contrast between the 

pessimistic and optimistic fracture orientation. The fractures with strikes of 10 and 170 degrees 

contribute very little to permeability in the x-direction while fractures at strikes of 80 and 100 degrees 

contribute a great deal to permeability in the x-direction. Unfortunately it is not possible to simply choose 

an optimistic fracture orientation that is twice that of the pessimistic orientation (as was done for the 

other three variables). While the orientation was the most influential parameter in this sensitivity study, 

in practice this would rarely be the case. Fracture orientation is usually known with reasonable accuracy 

compared to variables such as length and aperture. 

 

Sensitivity Analysis 3 

The third and final sensitivity analysis was designed to take into fracture connectivity into account. The 

data used in the analysis is shown in Table 2. Oda’s method does not take fracture connectivity into 

account in the calculation of effective permeability. However, it is assumed here that fractures which do 

not intersect any other fractures or the borders of the grid block have no practical effect on grid block 

permeability. The code to calculate the effective permeability of the grid blocks using Oda’s method was 

modified to remove all fractures which do not intersect other fractures or the borders of the grid block. 
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Pessimistic and optimistic fracture lengths were shortened to 20 and 40 m and fracture densities were 

reduced to 50 and 100 since the data presented in Table 1 usually result in 100% of all fractures being 

connected to other fractures or the grid block border. All fractures are oriented to strike at 90 degrees 

from north to remove any orientation effect. 

 The result of the sensitivity analysis is shown in Figure 7. As is shown in the figure, the two most 

important factors are the interaction of connectivity and aperture as well as length and connectivity. At 

present it is unknown why the single fracture attributes such as aperture and length are less important 

than their combined effects, and why connectivity is less important than when it is combined with other 

parameters. 

 

Conclusions 

This paper first reviews Oda’s approach to calculating an effective permeability tensor from a discrete 

fracture network. Oda’s approach is fast and does not require flow simulation to obtain equivalent 

permeability. However, it does not take fracture connectivity into account and is limited to well-

connected fracture networks. A computer program has been constructed to calculate effective 

permeability tensors from discrete fracture networks using Oda’s approach. 

 Many synthetic discrete fracture networks were generated. The relationship between fracture 

length, density and the fracture network equivalent permeability was investigated. As expected, as 

fracture length and density increase, so does the equivalent permeability for the grid block. A box 

counting algorithm was used to determine the fractal dimension of the DFNs. A strong relationship exists 

between the fractal dimension calculated using the box-counting algorithm and the equivalent 

permeability of the grid block. 

 A sensitivity analysis was conducted using experimental design techniques. The sensitivity 

analysis shows that fracture aperture is the most influential parameter on the equivalent permeability, 

followed by length and density. The influence of orientation is more difficult to assess because its 

influence depends on the values chosen for the sensitivity study. Fracture connectivity also appears to be 

an important parameter although it is unknown why the interaction of connectivity and other parameters 

is more important than connectivity itself. 
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Table 1: Levels for four fracture parameters (sensitivity analysis 1) 

Variable Pessimistic (-1) Optimistic (1) 

Length (m) 40 80 

Density 100 200 

Orientation (strike of fracture) N/S – E/W (90/0) NW/SE – NE/SW (45/135) 

Aperture (mm) 0.1 0.2 

 

Table 2: Levels for four fracture parameters (sensitivity analysis 3) 

Variable Pessimistic (-1) Optimistic (1) 

Length (m) 20 40 

Density 50 100 

Orientation (strike of fracture) E/W (90) E/W (90) 

Aperture (mm) 0.1 0.2 
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Figure 1: Example fracture network with fracture sets N/S and E/W. Fractures have a fixed length of 20 m. 
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Figure 2: Fracture length vs. equivalent permeability in x-direction 
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Figure 3: Fracture density vs. equivalent permeability in x-direction 
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Figure 4: Fractal dimension vs. equivalent permeability in the x-direction 
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Figure 5: Pareto chart of the absolute effect of different variables and their combinations for sensitivity 

study 1 (data from Table 1). 
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Figure 6: Pareto chart of the absolute effect of different variables and their combinations for sensitivity 

study 2. 
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Figure 7: Pareto chart of the absolute effect of different variables and their combinations for sensitivity 

analysis 3 (data from Table 2). 

 


