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Updating Simulated Realizations with New Data
Eric B. Niven, David Garner and Clayton V. Deutsch

Currently, the only way to update simulated realizations with new data is to re-simulate the entire model.
This results in a completely new set of realizations that may look very different from the old ones, even at
large distances from the new data. This paper presents an easy and theoretically valid method to update
the existing realizations with new data. The resulting realizations honor the new and old data as well as
the general features of the old realizations. Furthermore, the realizations are unchanged at large distances
away from the new data (i.e. beyond the variogram range). A GSLIB-style computer program is presented
that automatically updates existing realizations with new data.

Introduction
For many mining and petroleum projects, drilling for samples occurs in defined seasons. For instance,
many mining projects in the pre-feasibility stages may conduct drilling campaigns in the summer when the
weather is good. The data obtained from drilling is analyzed by geologists and geostatisticians, who then
build numerical geological models, which may result in a set of simulated realizations. After successive
drilling programs, there is new data that needs to be incorporated into the geological models. Usually, this
requires completely rebuilding the numerical geological models with the old data and the new data
combined. One disadvantage of this method is that the resulting updated simulated realizations will look
very different, even at large distances away from the new data locations (i.e. beyond the variogram range)
due to the implementation of sequential Gaussian simulation.

This research presents a simple method of updating old realizations based upon the new data
collected, rather than completely rebuilding new realizations from scratch.

Proposed Methodology
Say we have n samples, y,, where & = 1,...,n, from an old drilling program and that those n samples
are used to build a set of simulated realizations. We can also say that there are m new samples, y_,

where W =n+1,...,m, that we wish to use in order to update our simulated realizations (generated

with sequential Gaussian simulation). At each of the new and old sample locations, we can calculate the
difference between the simulated realizations and the new sample attribute value:

A ==Y, imated i=1,...k and k=n+m (1)
Note that Ai =0 at each of the old sample locations since sequential Gaussian simulation honors the
data. For each simulated realization, we can simple krige an estimate of A;k (using a mean of 0) at every
location in our field of interest. Then we can add together the kriged estimates of A;k and the simulated

realizations, yJ . The result is a set of updated simulated realizations that honor the new and old data

while leaving the realizations unchanged at locations beyond the range of correlation from new data and
preserving the general features of the old realizations. This method is similar to that presented by Barnes
and Watson (1992). This method is theoretically valid as is shown in Proof 1.

Proof 1 — Show that Updating Simulated Realizations is Valid
Figure 1 shows an arrangement of old samples (shown as red stars), a location for estimation (location 2,
shown by the green square) and a new sample (location 1, shown by an orange circle). Say there are n old

samples, y,, where & = 1,...,7m . Now say we have one new sample at location 1, Voew » (@8 is shown in

Figure 1). Then, the kriged estimate at location 1, using all n old data is (Isaaks and Srivastava, 1989):

Yin = i%,ya (2)
a=1
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And the kriged estimate at location 2 using all n old data is:

You =D YaVa
a=1

However, the kriged estimate at location 2 using all n old data plus 1 new data is:
n
.
y2,n+l = Zﬂay(l + ¢ynewl
a=1

Meanwhile, the estimate of A: at location 2 using all n old data plus 1 new data is:

A;n+l = ZnaAa + §Anewl
a=1

(3)

(4)

(5)

Remember that Aa =Y, —y;. Now, Aa =0 for all & since previously kriged or simulated surface

honors the old data. So, we have:

A;,nﬂ = 5( ynewl - y:,n)

In order to show that simulated results can be updated, it is sufficient to show that:
k

y2,n+l - yZ,n + 2,n+1

The simple kriging equations for yin are:

The simple kriging equations for y;,n are:

> 7.Cp=C, a=l..n
B=1

The simple kriging equations for y;nH are:

Zyacaﬂ+¢cal :Czﬁ 0(:1,...,1’1
p=1

z 7.Cis +9C, =G, (the n+1 equation)
A1

The simple kriging equations for A;nﬂ are:

>1n,Cz+6C,=C,, a=l..n
=1

Z%Cm +0C,,=C,, (the n+1 equation)
=

Note that:
Mo =M,
o=¢

Now, if we substitute equation (8) and (9) into equation (11), we have:

Zn:naCaﬂ+5ilaCaﬂ =i}/aCaﬁ a=1,.,n
B=1 B=1 B=1

Simplifying:

n

(77, +4,1C,4 =Zn:7acaﬂ a=1,..,n
p=1

B=
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Simplifying we have:

n,+ok, =7, a=l..n (16)
Since this is a solution, it must be the solution since kriging is unique. Now, we can substitute equations
(3) and (6) into (7) to get:

y;,m—l :Zyaya+5(ynewl_yl*,n) azl""’n (17)
a=1
If we substitute equation (16) into equation (17) we get:
y;,n+l :Z(not-i-a/la)ya-i_é‘(ynewl_y:,n) 0{=1,...,n (18)
a=1

And if we substitute equation (2) into equation (18) and simplify, we get:

y;,nﬂ :Znaya+522’aya+§(ynewl_Zﬂ’aytz) a=1,...,n (19)
a=1 a=1 a=1
:znaya-l-azﬂaya-i_é‘ynewl_5Zﬂaya azl’“"n (20)
a=1 a=1 a=1
=Y Yo+ 0V A=l..n (21)
a=1

Note that since 77, = 4, and 0 = @, we are left with:

y;,nﬂ :Zﬂaya+¢ynewl azl""’n (22)
a=1

Which is correct and the same as our original definition for y;nH in equation (4). Of course, the result is
the same if m new data are used instead of just one new data. Therefore, it is proved that we can add
together the kriged estimates of A;k, based upon m new data and the kriged estimate of the variable

based upon n old data at each location in the domain of interest. Next, we must show that the
conditional mean and variance are unaffected by updating and that the condicional covariance between
unsampled locations is preserved.

Proof 2 — Check Mean Value Reproduction
We start with the definition of the updated simulated value at location 2:

new old
ysim (M) = ysim (M) + Ask

u (23)
= ytk (M) + y?zm (M) - yvk old (l/l)
Where y!"(u)is a simulated value from the new (updated) realization at a location u, y”m “(u) is the

simulated value from the old realization at location u, A, =y () =y, ., (1) is the kriged difference

between the data values and the old simulated realization at the data value locations (i.e.

Ay =2 AL (w) = 3 ()1

)+ s ;7;;<u>} Eb e ota ®)

“Dran @)= £l )
E{>sk(”)}+°+ z A LWED )
U]

=E yvk(u) +0+0

o

So, the mean is unchanged. Now, we must check the variance reproduction.
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Proof 3 — Check Variance Reproduction
Since y,, (u) is a constant:

sim _ sim _ sim
V‘”{ynew(”)} = V‘”{ysk W+Y01a W+ Y ola (”)} = V“’{yold W+Y g old (”)}

Recalling that Var{ X } = E{X2}—m§, where m_ is the mean of X, then:

sim sim :
V‘”{ (”)} {[yold(u)-'-ysk,old(u)} }‘02

{yszl’;(“)} { ZEZ;(“)ysk old(“)}+E{ysk,old(“)2}
Slm

. 2 . . . . .
Since {y 1d (n) } and E{ysk,old (n) } is the variance of the kriged estimate (i.e.
2l 4 2 .
E{ysk,old (u) }—1 o, (1)), then we have:
sim 1 sim P
Var{ynew(u)}—l 22@3{ Vo (u)ysk Old(u)}—i-l o’ (u)

Recalling that ofk (n) = 1—2/10,C(u —u,), the variance of the updated realization is:

a=1

Var{ Slm(u)}—l 2(1-0% ) +1-02 (u)

Var{ sim (u)} o2 (u)

So, the conditional variance is correct! Now, we must check the covariance between two conditionally
simulated points. Consider two updated points u and u’. Then the updated simulated values at those

locations are:
old

yfii: (M) = ysk (M) + ysim (Ll) - ysk,old (l/l)

new old

ysim (I/l,) = ysk (I/l,) + ysim (I/l,) - ysk,old (I/l,)
Recalling that Cov(x, y) = E{[x—m_][y —my] }, the covariance between the values at u and v’ is:

Cov{yle @),y )} = E{[ (3 0+ ¥4 () = ¥y 1)) = 3 )
(30 + 00 = 3y @) = 3, ) ]}
Cov{yzer ), yi )} = E{[ Y @)= Y a @0) ][ Y0 = ¥y s ]}
= E{ 50 ) Yot ) = Y i (10) Yot ) = Y00 00D Y s )+ Yoy )Y a0

k k
= C(h) =Y A, E] it w) vt )} = Y. A, E{ v ) vt )}

3" A, ) A ) E{ yo (u,) yo (us)}

a=1 p=1

C(h)—zk:ﬂa(u)C(u'—ua)—i/la(u)C(u—ua)

a=1

D" 2 ) Ay (u)Cuy —uy)

a=1 p=1
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Now, recall the kriging system of equations:

Zn:ﬂﬁ(u')C(ua—uﬁ)=C(u'—ua) a=1,...k
=
Zn:ﬂﬁ(u)C(ua—uﬁ)=C(u—ua) a=1,...k
=

So, (36) becomes:

=C()=D A, A u)Cluy —uug) =Y A, @)D A )C(u, —1u,)
a=1 p=1 a=1 p=1

+> > A (WA (u)Clu, —uy)

a=1 p=1

—_

Therefore:
k k
Cov{ Y (1), y;;j’;’(u’)} =C(h) =Y A, A (w)Clu, —uy)
a=1 p=1

Thus, the conditional covariance between any two updated simulated values is correct. So we have seen
that this method of updating simulated realizations gives the right expected value, the right variance and
the right conditional covariance for any two locations u and u’.

Implementation
A GSLIB-style program called UPDATE_SIM was created which calculates A, at each data location. Then, a

kriged estimate of A, is calculated at each location in the domain of interest. Finally, the simulated
realizations based upon the old data and the estimate of A’ are added together to arrive at an updated

set of realizations.

In order to illustrate the algorithm, a simple 1D example is considered first. Figure 2 shows six old
samples (shown as blue circles) and 1 new sample (shown as a red square) of some attribute along a line.
The distance between the samples is noted. Figure 3 shows three sequential Gaussian simulated
realizations of the attribute based upon only the old samples. The values are shown simulated at a 1
distance unit spacing. A spherical variogram with no nugget effect and a range of 20 was assumed.
Naturally, the realizations converge at the old data locations since sequential Gaussian simulation honors
the samples.

At each of the old and new sample locations A can be calculated for each of the three simulated

realizations (A, =0 at each of the old data locations and A, 20 at the new data location). Figure 4 shows
the kriged estimates of A at each location and for all three realizations. The kriged estimate is

constructed by simple kriging using the same variogram as the original simulation and a mean of 0.0.
Figure 5 shows the simulated realizations after they have been updated to incorporate the new data
point. The updated realizations are created by adding the old realization to the kriged estimate A, . Note

that the realizations are unchanged at distances of greater than 20 units from the new data point since
that is the range of the variogram.

Next, a more complicated 2D example is considered. Figure 6 shows to location maps of samples
from the Jura data set. The left location map shows 259 old data that are assumed to have been collected
in the past. The right location map shows 100 new data that are assumed to have been collected recently.
A set of simulated realizations have already been constructed using the 259 old data and it would be
useful to update those realizations rather than reconstructing them from scratch. Figure 7 shows the
omnidirectional variograms for the new and old data. Both variograms were modeled using a single-
structure spherical variogram with a nugget effect of 0.15 and a range of 1.1 distance units. Although the
fit for the new data variogram is not as good as that for the old data, the fit still appears reasonable given
that its sample size is much smaller.
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On the top row of Figure 8, the realizations created using only the 259 old data are displayed. The 100
new data are then used to update the old realizations using the program UPDATE_SIM. The program
calculates the difference between all 359 (new and old) data locations and the old simulated realizations.
The differences are zero at the old data locations and not zero at all the new data locations (note that this
is done for every realization). The differences are kriged and the kriged realizations are added to the old
realizations to create updated realizations. The updated realizations for the Jura data are shown in the
middle row of Figure 8. The updated realizations honor all the old and new data and are unchanged at
locations that are outside the range of correlation from new data.

It should be noted that this method assumes that the new data is from the same population as
the old data and that they can be statistically grouped together under a decision of stationarity.
Furthermore, this method assumes that the variogram is unchanged by the new data.

Conclusions and Future Work

Usually when new data is obtained, the geostatistician must rebuild the entire numerical geological
model. This will result in new simulated realizations that look quite different from the old ones, even at
great distances from the new data due to the implementation of sequential Gaussian simulation. Thus, it
is somewhat difficult to examine the impact of new data on simulated realizations.

This research presents an easy and theoretically valid method for updating simulated realizations with
new data. The updated realizations honor both the new and old data as well as the features of the old
realizations. Furthermore, the realizations are unchanged at large distances away from the new data (i.e.
beyond the variogram range). A computer program was developed which will automatically update a set
of simulated realizations of a continuous variable.
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Figure 1: Three old samples, one new sample and the location for estimation within a domain of interest
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Figure 2: Six old samples (shown as blue circles) and one new sample (shown as a red square) along a line
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Figure 3: Three simulated realizations, based upon the old data points (the new data point was excluded

from the sequential Gaussian simulation).
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Figure 4: Three kriged estimates of the difference between new data point and the simulated realization
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Figure 5: The updated simulated realizations, created by adding the kriged Ask and the old simulated

realizations.

110-7



Paper 110, CCG Annual Report 11, 2009 (© 2009)

259 OId Ni. Data 100 New Ni. Data
6.00 6.00
40.000 40.000
5.00.] 5.00
35.000 35.000
4.00_| 30.000 4.00_} 30.000
25.000 25.000
3.00] 3.00]
20.000 20.000
2.00] 15.000 2.00_] 15.000
10.000 10.000
1.00_] 1.00_]
5.000 5.000
000 T T T T T 0.0 T T T T T
000 100 200 300 400 500  6.00 000 100 200 300 400 500  6.00

Figure 6: The Jura dataset. 259 old nickel concentration samples (ppm) and 100 new nickel samples.
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Figure 7: Omnidirectional variograms for the 259 old data on the left and the 100 new data on the right.
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Figure 8: Top row: two simulated realizations of nickel content (ppm) created using 259 old data. Middle
row: two updated realizations that incorporate the 100 new data in addition to the 259 old data. Bottom
row: The kriged difference between the new data values and the old realizations
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