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Updating Simulated Realizations with New Data 
 

Eric B. Niven, David Garner and Clayton V. Deutsch 

 

Currently, the only way to update simulated realizations with new data is to re-simulate the entire model. 

This results in a completely new set of realizations that may look very different from the old ones, even at 

large distances from the new data. This paper presents an easy and theoretically valid method to update 

the existing realizations with new data. The resulting realizations honor the new and old data as well as 

the general features of the old realizations. Furthermore, the realizations are unchanged at large distances 

away from the new data (i.e. beyond the variogram range). A GSLIB-style computer program is presented 

that automatically updates existing realizations with new data. 

 

Introduction 

For many mining and petroleum projects, drilling for samples occurs in defined seasons. For instance, 

many mining projects in the pre-feasibility stages may conduct drilling campaigns in the summer when the 

weather is good. The data obtained from drilling is analyzed by geologists and geostatisticians, who then 

build numerical geological models, which may result in a set of simulated realizations. After successive 

drilling programs, there is new data that needs to be incorporated into the geological models. Usually, this 

requires completely rebuilding the numerical geological models with the old data and the new data 

combined. One disadvantage of this method is that the resulting updated simulated realizations will look 

very different, even at large distances away from the new data locations (i.e. beyond the variogram range) 

due to the implementation of sequential Gaussian simulation. 

 This research presents a simple method of updating old realizations based upon the new data 

collected, rather than completely rebuilding new realizations from scratch. 

 

Proposed Methodology 

Say we have n samples, yα , where 1,...,nα = , from an old drilling program and that those n samples 

are used to build a set of simulated realizations. We can also say that there are m new samples, yω , 

where 1,...,n mω = + , that we wish to use in order to update our simulated realizations (generated 

with sequential Gaussian simulation). At each of the new and old sample locations, we can calculate the 

difference between the simulated realizations and the new sample attribute value: 

 , 1,...,i i i simulatedy y i k and k n m∆ = − = = +  (1) 

Note that 0
i

∆ =  at each of the old sample locations since sequential Gaussian simulation honors the 

data. For each simulated realization, we can simple krige an estimate of 
*

i∆  (using a mean of 0) at every 

location in our field of interest. Then we can add together the kriged estimates of 
*

i∆  and the simulated 

realizations, 
*

sy . The result is a set of updated simulated realizations that honor the new and old data 

while leaving the realizations unchanged at locations beyond the range of correlation from new data and 

preserving the general features of the old realizations. This method is similar to that presented by Barnes 

and Watson (1992).  This method is theoretically valid as is shown in Proof 1. 

 

Proof 1 – Show that Updating Simulated Realizations is Valid 

Figure 1 shows an arrangement of old samples (shown as red stars), a location for estimation (location 2, 

shown by the green square) and a new sample (location 1, shown by an orange circle). Say there are n old 

samples, yα , where 1,...,nα = . Now say we have one new sample at location 1, 
1new

y , (as is shown in 

Figure 1).  Then, the kriged estimate at location 1, using all n old data is (Isaaks and Srivastava, 1989): 

 
*

1,

1

n

ny yα α
α

λ
=

=∑  (2) 
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And the kriged estimate at location 2 using all n old data is: 

 
*

2,

1

n

ny yα α
α

γ
=

=∑  (3) 

However, the kriged estimate at location 2 using all n old data plus 1 new data is: 

 
*

2, 1 1

1

n

n newy y yα α
α

µ ϕ+
=

= +∑  (4) 

Meanwhile, the estimate of 
*

i∆  at location 2 using all n old data plus 1 new data is: 

 
*

2, 1 1

1

n

n newα α
α

η δ+
=

∆ = ∆ + ∆∑  (5) 

Remember that 
*y yα α α∆ = − . Now, 0α∆ =  for all α since previously kriged or simulated surface 

honors the old data. So, we have: 

 
* *

2, 1 1 1,( )n new ny yδ+∆ = −  (6) 

In order to show that simulated results can be updated, it is sufficient to show that: 

 
* * *

2, 1 2, 2, 1n n ny y+ += + ∆  (7) 

The simple kriging equations for 
*

1,ny  are: 

 
1

1

1,...,
n

C C nα αβ α
β

λ α
=

= =∑  (8) 

The simple kriging equations for 
*

2,ny  are: 

 
2

1

1,...,
n

C C nα αβ α
β

γ α
=

= =∑  (9) 

The simple kriging equations for 
*

2, 1ny +  are: 

 

1 2

1

1 11 12

1

1,...,

( 1 )

n

n

C C C n

C C C the n equation

α αβ α α
β

α β
β

γ ϕ α

γ ϕ

=

=

+ = =

+ = +

∑

∑
 (10) 

The simple kriging equations for 
*

2, 1n+∆  are: 

 
1 2

1

1 11 12

1

1,...,

( 1 )

n

n

C C C n

C C C the n equation

α αβ α α
β

α β
β

η δ α

η δ

=

=

+ = =

+ = +

∑

∑

 (11) 

Note that: 

 
α αη µ=  (12) 

 δ ϕ=  (13) 

Now, if we substitute equation (8) and (9) into equation (11), we have: 

 

1 1 1

1,...,
n n n

C C C nα αβ α αβ α αβ
β β β

η δ λ γ α
= = =

+ = =∑ ∑ ∑  (14) 

Simplifying: 

 

1 1

[ ] 1,...,
n n

C C nα α αβ α αβ
β β

η δλ γ α
= =

+ = =∑ ∑  (15) 
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Simplifying we have: 

 1,..., nα α αη δλ γ α+ = =  (16) 

Since this is a solution, it must be the solution since kriging is unique. Now, we can substitute equations 

(3) and (6) into (7) to get: 

 * *

2, 1 1 1,

1

( ) 1,...,
n

n new ny y y y nα α
α

γ δ α+
=

= + − =∑  (17) 

If we substitute equation (16) into equation (17) we get: 

 
* *

2, 1 1 1,

1

( ) ( ) 1,...,
n

n new n
y y y y nα α α

α

η δλ δ α+
=

= + + − =∑  (18) 

And if we substitute equation (2) into equation (18) and simplify, we get: 

 
*

2, 1 1

1 1 1

( ) 1,...,
n n n

n new
y y y y y nα α α α α α

α α α

η δ λ δ λ α+
= = =

= + + − =∑ ∑ ∑  (19) 

 
1

1 1 1

1,...,
n n n

new
y y y y nα α α α α α

α α α

η δ λ δ δ λ α
= = =

= + + − =∑ ∑ ∑  (20) 

 
1

1

1,...,
n

newy y nα α
α

η δ α
=

= + =∑  (21) 

Note that since α αη µ=  and δ ϕ= , we are left with: 

 
*

2, 1 1

1

1,...,
n

n new
y y y nα α

α

µ ϕ α+
=

= + =∑  (22) 

Which is correct and the same as our original definition for 
*

2, 1ny +  in equation (4). Of course, the result is 

the same if m new data are used instead of just one new data. Therefore, it is proved that we can add 

together the kriged estimates of 
*

i∆ , based upon m new data and the kriged estimate of the variable 

based upon n old data at each location in the domain of interest.  Next, we must show that the 

conditional mean and variance are unaffected by updating and that the condicional covariance between 

unsampled locations is preserved. 

 

Proof 2 – Check Mean Value Reproduction 

We start with the definition of the updated simulated value at location 2: 

 

,

( ) ( )

( ) ( ) ( )

new old

sim sim sk

old

sk sim sk old

y u y u

y u y u y u

= + ∆

= + −
 (23) 

Where ( )new

simy u is a simulated value from the new (updated) realization at a location u, ( )old

simy u  is the 

simulated value from the old realization at location u, 
,( ) ( )sk sk sk oldy u y u∆ = − is the kriged difference 

between the data values and the old simulated realization at the data value locations (i.e. 

1

[ ( ) ( )]
n

sk old
y u y uα α α

α

λ
=

∆ = −∑ ). 

 

{ } { } { } { }

{ } { }

{ }
{ }

( ) ( ) ( ) ( )
,

( ) 0 ( ) ( )

1

( ) 0 0

( )

sim sim
E y u E y u E y u E y u

new sk old sk old

k
E y u u E y u

sk old

E y u
sk

E y u
sk

λ
α α

α

= + +

= + + ∑
=

= + +

=

 (24) 

So, the mean is unchanged. Now, we must check the variance reproduction. 
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Proof 3 – Check Variance Reproduction 

Since ( )
sk

y u  is a constant: 

 { } { } { }( ) ( ) ( ) ( ) ( ) ( )
, ,

sim sim sim
Var y u Var y u y u y u Var y u y u

new sk old sk old old sk old
= + + = +  (25) 

Recalling that 
2 2{ } { } xVar X E X m= − , where 

x
m  is the mean of X, then: 

 { }
2

2
( ) ( ) ( ) 0

,
sim sim

Var y u E y u y u
new old sk old

  = + −    
 (26) 

 { }2 2
( ) 2 ( ) ( ) ( )

, ,
sim sim

E y u y u y u y u
old old sk old sk old

= − +  (27) 

 { } { } { }2 2
( ) 2 ( ) ( ) ( )

, ,
sim sim

E y u E y u y u E y u
old old sk old sk old

= − +  (28) 

Since { }2( ) 1sim
E y u

old
=  and { }2

( )
,

E y u
sk old

 is the variance of the kriged estimate (i.e. 

{ }2 2
( ) 1 ( )

, skE y u u
sk old

σ= − ), then we have: 

 { } { } 2( ) 1 2 ( ) ( ) 1 ( )
, sk

sim simVar y u E y u y u u
new old sk oldαλ σ= − + −∑  (29) 

Recalling that 
2

1

( ) 1 ( )
n

sk
u C u uα α

α

σ λ
=

= − −∑ , the variance of the updated realization is: 

 { } ( )2 2( ) 1 2 1 ( ) 1 ( )
sk sk

sim
Var y u u u

new
σ σ= − − + −  (30) 

 { } 2( ) ( )
sk

sim
Var y u u

new
σ=  (31) 

So, the conditional variance is correct! Now, we must check the covariance between two conditionally 

simulated points. Consider two updated points u and u’. Then the updated simulated values at those 

locations are: 

 
,

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

new old

sim sk sim sk old

new old

sim sk sim sk old

y u y u y u y u

y u y u y u y u

= + −

′ ′ ′ ′= + −
 (32) 

Recalling that ( , ) {[ ][ ]}x yCov x y E x m y m= − − , the covariance between the values at u and u’ is: 

 
{ } ( ){

( ) }
,

,

( ), ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

new new old

sim sim sk sim sk old sk

old

sk sim sk old sk

Cov y u y u E y u y u y u y u

y u y u y u y u

 ′ = + − − 

 ′ ′ ′ ′+ − − 

 (33) 

 { } }{ , ,( ), ( ) ( ) ( ) ( ) ( )new new old old

sim sim sim sk old sim sk old
Cov y u y u E y u y u y u y u′ ′ ′   = − −     (34) 

 }{ , , , ,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
old old old old

sim sim sk old sim sim sk old sk old sk old
E y u y u y u y u y u y u y u y u′ ′ ′ ′= − − +  (35) 

 

{ } { }

{ }

1 1

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k k
old old old old

sim sim sim sim

k k
old old

sim sim

C h u E y u y u u E y u y u

u u E y u y u

α α α α
α α

α β α β
α β

λ λ

λ λ

= =

= =

′= − −

+

∑ ∑

∑∑
 (36) 

 1 1

1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

k k

k k

C h u C u u u C u u

u u C u u

α α α α
α α

α β α β
α β

λ λ

λ λ

= =

= =

′= − − − −

′+ −

∑ ∑

∑∑
 (37) 
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Now, recall the kriging system of equations: 

 
1

1

( ) ( ) ( ) 1,...,

( ) ( ) ( ) 1,...,

n

n

u C u u C u u k

u C u u C u u k

β α β α
β

β α β α
β

λ α

λ α

=

=

′ ′− = − =

− = − =

∑

∑
 (38) 

So, (36) becomes: 

 
1 1 1 1

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

k k k k

k k

C h u u C u u u u C u u

u u C u u

α β α β α β α β
α β α β

α β α β
α β

λ λ λ λ

λ λ

= = = =

= =

′ ′= − − − −

′+ −

∑ ∑ ∑ ∑

∑∑
 (39) 

Therefore: 

 { }
1 1

( ), ( ) ( ) ( ) ( ) ( )
k k

new new

sim simCov y u y u C h u u C u uα β α β
α β

λ λ
= =

′ ′= − −∑ ∑  (40) 

Thus, the conditional covariance between any two updated simulated values is correct. So we have seen 

that this method of updating simulated realizations gives the right expected value, the right variance and 

the right conditional covariance for any two locations u and u’. 

 

Implementation 

A GSLIB-style program called UPDATE_SIM was created which calculates 
i∆  at each data location. Then, a 

kriged estimate of *

i∆  is calculated at each location in the domain of interest. Finally, the simulated 

realizations based upon the old data and the estimate of *

i∆  are added together to arrive at an updated 

set of realizations. 

 In order to illustrate the algorithm, a simple 1D example is considered first. Figure 2 shows six old 

samples (shown as blue circles) and 1 new sample (shown as a red square) of some attribute along a line. 

The distance between the samples is noted.  Figure 3 shows three sequential Gaussian simulated 

realizations of the attribute based upon only the old samples. The values are shown simulated at a 1 

distance unit spacing. A spherical variogram with no nugget effect and a range of 20 was assumed. 

Naturally, the realizations converge at the old data locations since sequential Gaussian simulation honors 

the samples. 

 At each of the old and new sample locations 
i∆  can be calculated for each of the three simulated 

realizations ( 0
i

∆ =  at each of the old data locations and 0
i

∆ ≠  at the new data location). Figure 4 shows 

the kriged estimates of 
sk∆  at each location and for all three realizations. The kriged estimate is 

constructed by simple kriging using the same variogram as the original simulation and a mean of 0.0. 

Figure 5 shows the simulated realizations after they have been updated to incorporate the new data 

point. The updated realizations are created by adding the old realization to the kriged estimate 
sk

∆ . Note 

that the realizations are unchanged at distances of greater than 20 units from the new data point since 

that is the range of the variogram. 

 Next, a more complicated 2D example is considered. Figure 6 shows to location maps of samples 

from the Jura data set. The left location map shows 259 old data that are assumed to have been collected 

in the past. The right location map shows 100 new data that are assumed to have been collected recently. 

A set of simulated realizations have already been constructed using the 259 old data and it would be 

useful to update those realizations rather than reconstructing them from scratch.  Figure 7 shows the 

omnidirectional variograms for the new and old data. Both variograms were modeled using a single-

structure spherical variogram with a nugget effect of 0.15 and a range of 1.1 distance units. Although the 

fit for the new data variogram is not as good as that for the old data, the fit still appears reasonable given 

that its sample size is much smaller. 
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On the top row of Figure 8, the realizations created using only the 259 old data are displayed. The 100 

new data are then used to update the old realizations using the program UPDATE_SIM. The program 

calculates the difference between all 359 (new and old) data locations and the old simulated realizations. 

The differences are zero at the old data locations and not zero at all the new data locations (note that this 

is done for every realization). The differences are kriged and the kriged realizations are added to the old 

realizations to create updated realizations. The updated realizations for the Jura data are shown in the 

middle row of Figure 8. The updated realizations honor all the old and new data and are unchanged at 

locations that are outside the range of correlation from new data. 

 It should be noted that this method assumes that the new data is from the same population as 

the old data and that they can be statistically grouped together under a decision of stationarity. 

Furthermore, this method assumes that the variogram is unchanged by the new data. 

 

Conclusions and Future Work 

Usually when new data is obtained, the geostatistician must rebuild the entire numerical geological 

model. This will result in new simulated realizations that look quite different from the old ones, even at 

great distances from the new data due to the implementation of sequential Gaussian simulation. Thus, it 

is somewhat difficult to examine the impact of new data on simulated realizations. 

This research presents an easy and theoretically valid method for updating simulated realizations with 

new data. The updated realizations honor both the new and old data as well as the features of the old 

realizations. Furthermore, the realizations are unchanged at large distances away from the new data (i.e. 

beyond the variogram range). A computer program was developed which will automatically update a set 

of simulated realizations of a continuous variable. 

 

References 

Barnes, R.J. and Watson, A.G., 1992, Efficient Updating of Kriging Estimates and Variances, Mathematical 

Geology, Vol. 24, No. 1, pages 129 – 133. 

Isaaks, E.H. and Srivastava, R.M., 1989, An Introduction to Applied Geostatistics, Oxford University Press, 

New York, 561 pages. 

 

  
 

 

 

1 

2 

Estimation Location 

Old Data Locations 

New Data Locations 

Figure 1: Three old samples, one new sample and the location for estimation within a domain of interest 
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Figure 2: Six old samples (shown as blue circles) and one new sample (shown as a red square) along a line 
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Figure 3: Three simulated realizations, based upon the old data points (the new data point was excluded 

from the sequential Gaussian simulation). 
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Figure 4: Three kriged estimates of the difference between new data point and the simulated realization 
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Figure 5: The updated simulated realizations, created by adding the kriged sk
∆  and the old simulated 

realizations. 
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Figure 6: The Jura dataset. 259 old nickel concentration samples (ppm) and 100 new nickel samples. 

 
Figure 7: Omnidirectional variograms for the 259 old data on the left and the 100 new data on the right. 

 

Figure 8: Top row: two simulated realizations of nickel content (ppm) created using 259 old data. Middle 

row: two updated realizations that incorporate the 100 new data in addition to the 259 old data. Bottom 

row: The kriged difference between the new data values and the old realizations 


