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Prerequisites for Geostatistics on Unstructured Grids 
 

John G. Manchuk and Clayton V. Deutsch 

 

Extending geostatistical algorithms for unstructured grids come with several requirements: grids must be 

discretized to account for the scale of grid elements, the heterogeneity within them, and in a way that is 

admissible to the upscaling processes that are used; discretization must provide a set of points that 

represent a constant scale, preferably a point scale; the number and style of a discretization should lead to 

no biases.  Results show that tetrahedral refinements do not lead to a bias using arithmetic upscaling and 

that convergence depends on the variogram, distribution function and element volume.  For facies, 

convergence depends on the proportion.  Permeability fields with higher contrasts and large heterogeneity 

show higher residuals and this highlights the importance of unstructured grid design. 

 

Introduction 

A recent problem for geostatistics is application to populating unstructured grids, which have been under 

consideration for reservoir analysis for some time.  One major challenge is dealing with the huge variation 

of scales involved across a set of unstructured grid elements.  Accounting for reservoir structures, wells, 

and heterogeneity can result in elements ranging from less than a cubic meter to thousands of cubic 

meters in volume.  An initial response to dealing with these scales and others describing the various 

sources of data was direct geostatistics – a few past CCG papers on the subject include (Pyrcz and 

Deutsch, 2002; Manchuk et al, 2004; and Leuangthong, 2004).  The motivation was to avoiding 

transformation to Gaussian space.  Problems with non-linear averaging through the transformation are 

eliminated and average covariances account for the shape and volume of elements and sample volumes.  

However, many unsolved issues exist: theory for the shape of conditional distributions from kriging does 

not exist; multivariate distribution models to account for correlations between variables have not been 

adequately implemented; the impact of numerically assessing average covariances on the condition of 

systems of equations has not been assessed; and theory for estimating physical quantities such as 

permeability at scales other than points is undeveloped. 

 Current practice is to generate a high resolution (fine) model on a structured grid and upscale the 

results to an unstructured (coarse) grid.  This approach has a number of issues.  The fine and coarse grids 

do not conform causing problems for upscaling, especially with unstructured elements smaller than the 

structured elements, which can occur near wells, leads to a poor representation of heterogeneity; related 

to the last issue, unstructured elements are all represented by varying numbers of structured elements, 

which may lead to a bias; and structured grids contain numerous geometrical characteristics which are 

suboptimal for flow based upscaling. 

 Structured discretization is not the optimal choice.  Most numerical integration schemes such as 

the midpoint, trapezoid, and various Gauss-quadrature rules only involve integration points within and on 

the boundary of a region.  Therefore, the new approach involves discretization resulting in conforming 

grids.  In general, this can only be accomplished if the discretization is also unstructured. 

 

Admissible Discretization 

Discretization of an unstructured grid is identical to refinement used in many numerical methods.  The 

purpose of refinement is to reduce error, be it the error of numerical integration, of a velocity field in CFD 

modeling or of some other quantity.  An unstructured grid is discretized or refined ultimately for upscaling 

purposes, to acquire effective reservoir properties as parameters for flow simulation.  Different 

refinement strategies will result in different upscaling error.  Choosing which to use is dependent on the 

upscaling processes involved – the refinement must be admissible for these processes. 

 Upscaling properties that average arithmetically with scale would permit many refinement 

approaches.  The constraining process is flow based upscaling for permeability.  A refinement must obey 

the requirements of the flow simulation technique used in the upscaling process.  If two point flux 

approximation (TPFA) is used, the refinement must form an orthogonal grid such as regular or PEBI grids.  

In the majority of cases, neither method will be possible: regular grids could not conform to complex 
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unstructured elements and maintain orthogonality and generating PEBI grids that conform is non-trivial.  

It is possible to generate a PEBI grid such that its dual tetrahedral grid conforms, but then the problem of 

resolving flow velocities along the unstructured element interfaces during upscaling resurfaces.  If the 

multipoint flux approximation (MPFA) method is used, then simulation can be done directly on the dual 

tetrahedral grid.  MPFA can also be applied to non-orthogonal structured grids; however, generating 

conforming structured refinements for an unstructured grid is also a non-trivial problem. 

 Tetrahedral grids are one of the few admissible discretizations for unstructured grids and existing 

flow simulation algorithms.  Aside from the fact than tetrahedral grids are used in many facets of 

engineering, several advantages are: methods for generation have been developed (Si, 2006) and are 

accessible; grids are easily constrained to conform to unstructured elements; the quality of tetrahedral 

elements can be controlled and this is important for stability of flow simulation; and generation can be 

tied to reservoir properties and to error estimates to improve results.  Other prerequisites are explained 

with reference to this grid structure.  

 

Scale 

Sample data involved in reservoir modeling involve several scales and unstructured grids introduce a huge 

range of element scales as well.  Integrating only the multiscale sample data has been a long standing 

problem in geostatistics.  This is magnified when considering unstructured grids.  Fortunately, the process 

of refinement has an additional use other than to achieve upscaled properties.  It removes the need to 

make estimates at the scale of unstructured elements, effectively removing that huge range of scales 

mentioned previously.  There is an underlying assumption: estimates made on a refinement are point 

scale.  For tetrahedral refinements, point scale estimates are made either at the barycentres as in Figure 1 

or the vertices.  Correctness of this assumption is covered in the following text. 

 Averaging a set of point scale barycentre estimates is similar to the midpoint integration rule 

where the underlying function is a random field of a reservoir property.  Each barycentre samples the field 

at that location.  This process can be described in terms of regularized variables (1): the arithmetic 

average of a random variable Zω with scale ω to obtain its equivalent ZV at another larger scale, V.  

Equation (1) is the exact form of an arithmetic average, but for an unstructured grid and its tetrahedral 

refinement, V represents a grid element and ω a set of tetrahedron barycentres.  Defining the volume of 

each tetrahedron as wk, barycentre locations xk, and number of tetrahedra n, the approximate integral for 

(1) is expressed as a finite sum (2).  A one dimensional depiction is given in Figure 2. 
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Generating estimates using (1) achieves the same goals as direct geostatistics, which were identified in 

the introduction: point scale estimation does not suffer from transformation problems making Gaussian 

simulation possible and discretization accounts for the shape and volume of elements.  It can be shown 

for Gaussian fields that the intended approach of direct simulation using average covariances gives the 

same result as averaging a set of point scale simulated values.  This is important for showing that use of 

point scale estimates is consistent with geostatistical scaling theory.  Consider a case where a Gaussian 

value is to be conditionally simulated based on N conditioning data to represent an unstructured grid 

element using average covariance, which is approximated by discretizing the element into n points.  In (3), 

y is the vector of conditioning data, 
s

y  is the simulated value, λ is the vector of kriging weights, c  is the 

vector of average covariances between data samples and the grid element, C11 is the covariance matrix 

between the conditioning data, and r is a zero mean random deviate with variance equal to (4).  Here, 

( , )C V V  is the average covariance of the element, which describes the variance at scale V. 
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Now consider representing the same element by simulating point scale values at each of the n points and 

averaging them as in (2).  For simplicity, assume all values represent an equal fraction of V, i.e. 

1/ , 1,...
k

w n k n= = .  To account for all covariances, the LU formalism is used.  Covariances between all 

conditioning data and discretization points is expressed in (5) along with its LU decomposition, where C12 

is the covariance between data and points and C22 is between points.  A conditional realization for all n 

points is generated using (6), where ys is the vector of simulated values and r is a vector of zero mean 

random deviates with unit variance.  Computing the mean and variance of the mean of (6) recovers 

exactly (3) and (4) respectively and this is shown in (7).  The first step replaces 
1

11
C

−
y  by αααα as in dual kriging 

and the expected value of L22r is a zero vector since { } { }22 22E EL L= =r r 0 .  Summation of C12 over i and 

multiplying by 1 / n gives the same average covariance vector in (3) and replacing αααα with its original matrix 

vector product recovers the same kriging estimate.  Computing the variance of the mean is a 

straightforward quadratic form expression of the variance of ys shown in (8), where d = [1 / n … 1 / n]
T
.  

These results are only applicable when no transformation is used and the variable being estimated 

averages arithmetically.  The advantage of using the second approach is realized when transformations 

and non-linear averaging are involved. 

 11 12 11 11 12

12 22 2212 22

0

0T
LU

C C L U B
C

A L UC C

     
= =         

 (5) 

 
1

21 11 22s
C C L

−
= +y y r  (6) 

{ } { } { }1

21 11 22

12,

1 1

1

11

E E E

1

s

n N

ij j

i j

T T

C C L

C
n

C

α

−

= =

−

= +

=

= =

∑∑

y y r

c α c y □

 (7) 

 

{ }{ } 1

22 12 11 12

1

22 12 11 12

1

11

Var E

( , )

( , )

T T

s

T T T

T

T

C C C C

C C C C

C V V C

C V V

−

−

−

 = − 

= −

= −

= −

y d d

d d d d

c c

λ c □

(8) 

Using point scale estimates is therefore consistent with geostatistical scaling theory under conditions 

when that theory is applicable.  Averaging a set of point scale values accounts for scale and shape as the 

average covariance approach does.  Although this discussion has shown that unstructured grid volumes 

can be accounted for, it has not given any indication for integrating multiscale sample data such as core, 

log and seismic.  An issue that has been resolved is that integration of these data sources is only necessary 

at a points scale and not at the range of scales presented by unstructured grids. 

 

Convergence 

In the context of this paper, convergence defines how numerical upscaling approaches compare with the 

theoretically correct result.  It assesses how the error between them changes with the degree of 

refinement of unstructured grid elements.  Several upscaling approaches are analyzed: arithmetic 

averaging for continuous variables such as porosity, for categorical variables such as facies, and for non-

linear averaging variables such as permeability.  Refinement is assumed to be tetrahedralization or 

triangulation, although similar equations would result using other conforming methods.  Gaussian 

simulation is used to populate the barycentres at a point scale. 

 First, define the partition of an unstructured element V into a set of n tetrahedra T: 

, 1,...,
k

t T k n∈ = .  The volume of each tetrahedron is Δtk with barycentres at xk.  All variables to be 

considered are random and specified by random field models Z(x) which are defined for all x.  Theoretical 

and numerical values for arithmetic averaging variables have already been defined by (1) and (2) 

respectively.  Computing an arithmetic average of a random field under conditions mentioned in the first 

paragraph is equivalent to a Riemann sum and the convergence is defined by (9), which if normalized by 

the volume of V is the arithmetic average.  Note that in the limit as Δt approaches zero n approaches 

infinity.  The discretization error ε for T is defined by (10) and using the modulus of continuity of Z(x) 

defined by (11) the error bound is given by (12).  In (11), s is a spatial location, d(s, xk) is the distance 

between s and xk and h is the largest observed distance between a barycentre and its associated 

tetrahedron vertices.  It is a measure of the continuity of the random field Z(x). 
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Evaluating the error bound is complex for several reasons: sampling the random field at Z(s) depends on 

the values already evaluated at Z(xk), k=1,…,n through the covariance function of Z; all Z(s) are associated 

with conditional distributions and the modulus of continuity must be evaluated in expected value; and if 

multiple facies and variables are considered, the conditional distributions of Z(s) become quite complex 

and difficult to specify analytically.  Despite this, one conclusion that can be drawn from these equations 

is: random fields with more spatial correlation, especially at the short range within Δtk, will have a lower 

modulus of continuity resulting in a lower error bound permitting coarser refinements. 

 Difficulties in evaluating the error bound warrant a numerical investigation into the convergence 

of point scale averages.  To consider random fields with uncertainty, the error in (10) will be evaluated 

without taking the absolute value, so the expected value and variance should approach zero as n 

approaches infinity.  The exact value of the integral in (10) is approximated by using a large number of 

discretization points.  Due to its complexity, permeability is evaluated first with regular grids.  Following 

this will be an assessment of convergence for Gaussian fields, porosity and facies on PEBI grid elements 

discretized into triangles and tetrahedra. 

 

Permeability 

Convergence properties of permeability are challenging to analyze since it does not average 

arithmetically.  Describing the flow through volume V to match the flow through it at a higher resolution is 

accomplished with a permeability tensor derived using flow based upscaling.  Several procedures for this 

exist and each will have different convergence properties. 

 A single phase extended local upscaling process is used to evaluate the convergence of the 

following quantities for upscaling permeability: mean pressure gradient over V; mean flux through V; and 

tensor components.  Permeability is assumed a scalar quantity at the point scale, Z(x).  In the extended 

local upscaling procedure, a set of fine scale permeabilities that cover the coarse volume plus some 

additional surrounding coarse volumes are chosen as the local domain, Figure 3.  General boundary 

conditions (BC) are applied in the principal coordinate directions to provide a set of Darcy equations from 

which a permeability tensor can be computed. 

Darcy’s law is often expressed as (13), where K is the hydraulic conductivity tensor, p∇  is the pressure 

gradient, and q is the flux.  In two dimensions, performing one solve with general boundary conditions in 

the x direction and a second solve with them in the y direction provides four equations for the upscaled 

tensor components to be derived from (14), where qx
x
 and qy

x
 are the mean flux in x and y due to the 

general BC in x (similarly for qx
y
 and qy

y
), 

x

x
p∇  and x

y
p∇ are the mean pressure gradient in x and y due to 

general BC in x (similarly for 
y

x
p∇  and y

y
p∇ ), and 

xx
K , 

xy
K , and 

yy
K  are the components of the 

assumed symmetric positive definite upscaled permeability tensor.  Equation (14) can be reformatted as a 

linear programming problem that must be solved for K  ≥ 0 (15), which is similarly expressed in three 

dimensions.  An additional error is introduced, that being the residuals between the true flux through V 

and those predicted by regression.  This is a measure of the information lost in increasing scale. 

 K p= − ∇q  (13) 
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Upscaling studies were conducted in two dimensions using a 10 by 10 volume that was surrounded by 8 

others of equal size and all were discretized into 961 points (8649 total) to compute the actual 

permeability tensor.  A spherical variogram with no nugget effect and a range of 5V was used.  Gaussian 

fields were transformed to be lognormal to represent a permeability field according to 

( )( ) exp 3 ( )Z x Y x= , where Y(x) is the Gaussian field and Z(x) is the permeability field in millidarcies.  

Three realizations and the resulting permeability tensors using all 961 points are shown in Figure 4. 

 Error curves for the mean pressure gradient, mean flux, and tensor components were 

standardized by the approximated actual values.  These error curves are shown in Figure 5 followed by 

the error curves of the tensor components and residuals in Figure 6 and Figure 7.  Even though the errors 

are not necessarily Gaussian, confidence intervals were still calculated and they do appear to provide 

meaningful bounds.  Because pressure, flux, and permeability are all tied via (13), they show similar 

convergence characteristics, which are surprisingly not much different than those of Gaussian fields 

covered in the next section.  Equation (13) also ties the errors: an error of 5% in tensor permeability 

components corresponds to an error of 5% in flux.  Flux residual curves in Figure 7 indicate several 

permeability fields that have very slow convergence of error.  These realizations are identified in Figure 8.  

Realizations that are more or less homogeneous show low residuals; those with moderate permeability 

ranges that are somewhat heterogeneous show higher residuals; and those realizations with large ranges 

and/or a high degree of heterogeneity result in the highest residuals.  As a side comment, this highlights 

the importance of segregating high permeability contrasts for grid design and upscaling purposes. 

 Analyzing an effective range of variograms and reservoir conditions to observe the convergence 

properties of the various upscaling techniques is a futile exercise, especially when nothing about grid 

design has been considered.  Apparent convergent rates are lower than actual due to unreasonable 

mixing of permeability within the same volume.  A practical approach to determining the discretization 

parameters will be project dependent, and this requires further development. 

 

Convergence with unstructured grids 

Carrying out convergence studies is difficult in the unstructured case due to reasons of geometry and 

flexibility.  Partitioning a volume into triangles or tetrahedra, then refining or coarsening that result to 

assess changes in error is not straightforward.  Additionally, there are no rules for how or where to refine 

a volume, which may prove useful in maximizing the convergence rate of volume estimates to the true 

value for any given realization.  However, examples will be given for convergence of Gaussian field and 

facies in two dimensions and porosity in three dimensions.  Triangulation and tetrahedralization are well 

developed techniques and existing programs are available: Triangle, by Shewchuk (1996) and TetGen by Si 

(2006) from the Numerical Mathematics and Scientific Computing Research Group.  Both are quality mesh 

generators and parameters that control the volume and angles of resulting elements are used to control 

mesh refinement for the convergence studies. 

 Convergence of triangulated volumes is assessed by generating random polygonal regions that fit 

within a 10 by 10 window, refining them with a large number of triangles to obtain an estimate of the true 

value, and then exploring a number of coarser triangulations to obtain error curves.  Element size is 

constrained by a maximum area parameter and the shape is constrained by an interior angle parameter of 

30 degrees.  This prevents triangles with high aspect ratios from being formed, which tend to cause poor 

performance for both numerical integration and flow simulation. 

 An example was setup using a spherical variogram with ranges of V/2, V, and 5V where V is 

assigned a value of 10.  A random polygon was created and discretized into 1114 triangles that 

corresponds to an area constraint of 0.1, Figure 9.  Area constraints were varied from 20 to 0.5 to 

construct the error curves, and for this polygon the resulting triangulations ranged from 7 to 221 
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elements.  These numbers are fairly consistent with the discretization used for the permeability case.  

Resulting error curves and confidence intervals are shown in Figure 10.  A slightly wider confidence 

interval is observed due to the irregular partitioning: it seems triangulation, when used as a midpoint 

integration rule, is not as efficient as a perfect regular grid partitioning for Gaussian random fields.  

However, it is not possible to discretize arbitrary polygons with a conforming regular grid, which adds a 

significant degree of difficulty for upscaling permeability.  Error curves were also generated for facies 

using a spherical variogram with range 5V and three facies with proportions 0.2, 0.3, and 0.5, Figure 11. 

 Two types of unstructured volumes were explored in 3-D: those from 2.5D grids and fully 

unstructured perpendicular bisector or Voronoi cells.  For the 2.5D case, the unstructured cell was 

discretized into 4400 tetrahedra to approximate the true average.  A spherical variogram with ranges V/2, 

V, and 5V was used, where V is equal to 10.  Convergence results for a Gaussian field are shown in Figure 

12.  One realization from the 5V range case is shown in Figure 13, along with one realization for a voronoi 

cell.  Convergence of errors for these two types of volumes showed no significant differences and only the 

2.5D results are shown. 

 Three studies were also done using the porosity distribution shown in Figure 14.  Spherical 

variograms with range V/2, V, and V with a 20% nugget effect are used, Figure 15.  The errors and 

confidence intervals are much smaller than before due to the reduced variance of porosity. 

 

Conclusions 

Extending geostatistics to populate unstructured grids has several requirements.  This paper discussed 

admissible discretization, which involves refining an unstructured grid into a set of finer scale elements so 

that upscaling can be achieved.  In most cases, permeability is the limiting variable and upscaling requires 

a mesh that is applicable to current flow simulation methods.  Tetrahedral refinement is one promising 

option.  Also explored was the concept of scale.  The only scales of concern are the refinement points and 

the usual core, log, seismic, and production data.  Lastly, the convergence of upscaling methods for 

permeability, facies, porosity, and Gaussian random fields was analyzed.  For arithmetic averaging, the 

major contributors that effect the error variance are the variogram and the distribution.  Larger variogram 

range leads to faster convergence; a nugget effect slows convergence; and lower errors occur for 

distributions that have a small finite range as compared to a Gaussian distribution which has an infinite 

range.  Flow based upscaling was also explored, and results were comparable to those for arithmetic 

averaging.  Larger residuals occur from combining high permeability contrasts and heterogeneity within a 

volume being upscaled.  Arithmetic upscaling processes were explored on unstructured grid elements.  

Discretization was accomplished with triangulation and tetrahedralization: they are well developed 

techniques; conforming grids are possible with any volume, which is a nice result for upscaling purposes; 

and triangular and tetrahedral elements are applicable to mixed finite element and multi point flux 

simulation schemes.  Resulting convergence of errors did not indicate any bias with arithmetic averaging. 

 If geostatistical tools are to be extended to characterize unstructured grids, a method of 

selecting discretization parameters must be available.  Error convergence studies indicated relationships 

between the volume, variogram, and distribution function of reservoir properties.  The potential 

complexity of these, along with the geometry of unstructured grids makes the selection of discretization 

parameters complex and this is addressed in future research. 
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Figure 1: Random estimates generated at barycentres.  

Coarse lines are the unstructured grid elements, fine lines 

are the refinement, and bullets define the barycentres

 

Figure 4: Permeability fields within V and resulting tensors

Figure 5: Pressure and flux errors for spherical range of 5
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Random estimates generated at barycentres.  

Coarse lines are the unstructured grid elements, fine lines 

are the refinement, and bullets define the barycentres 

Figure 2: Numerical regularization of a random field via the 

midpoint rule 

 

 
Figure 3: Extended local upscaling grids 

and resulting tensors 

                     
Pressure and flux errors for spherical range of 5V        Figure 6: Permeability tensor component errors
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Numerical regularization of a random field via the 

 

 
Permeability tensor component errors 
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Figure 7: Flux residuals resulting from scale change 

 
Figure 8: Flux residual curves and associated permeability fields 
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Figure 9: Example polygon and various refinements 

 

 
Figure 10: Convergence studies using triangulation and spherical variograms in two dimensions 

 

 
Figure 11: Convergence study for facies using triangulation and spherical variograms in two dimensions 
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Figure 12: Convergence studies using tetrahedra and spherical variograms in three dimensions 

 
Figure 13: Isometric view of 2.5D grid cell (left) and voronoi cell (right) shaded with a Gaussian random field.  Cells are 

refined into tetrahedra that are reduced to show detail. 

 
Figure 14: Porosity histogram 

 
Figure 15: Convergence of porosity using tetrahedra and various spherical variograms 


