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for Geostatistical Applications 
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Support vector algorithms are fairly new in machine learning. It has been successfully applied to solve a 

wide variety of problems, such as speech and handwriting recognition, natural language processing, medi-

cal diagnosis, stock market analysis, classifying DNA sequences, bioinformatics, etc (Kecman, 2001).  De-

spite its success in these areas, relatively few examples of applying support vector machines to the analysis 

of spatially distributed data can be found in the literature. This paper provides an introduction to the Sup-

port Vector Classification (SVC) algorithm and explores simple examples of its application to the following 

geostatistical problems: classification of categorical data, post processing of categorical realizations (im-

age cleaning), rapid generation of local refined boundaries, comparison of spaces of uncertainty, and clas-

sification of realizations.  This paper is the first of a series whose goal is to explore the application of Sup-

port Vector Machines to geostatistical problems.  
 

Introduction 

The support vector algorithm (Boser, Guyon and Vapnik, 1992) was initially developed for solving classifi-

cation problems.  Soon after, it was extended to deal with regression problems (Muller et al. 1997). In the 

context of spatially distributed data, the classification problem is similar to the problem of assigning a 

single category (e.g. facies or rock types) to unsampled locations based on observed data.   The goal of 

SVC is to find a boundary that separates the observed data with a maximum margin as shown in Figure 1.  

This boundary is then used to classify unsampled locations. According to the structural risk minimization 

principle developed in statistical learning theory, it is expected that a boundary with a maximum margin 

will better classify unsampled locations (or better generalizes) compared to a boundary with a narrow 

margin. The introduction to the support vector classification (SVC) algorithm presented below follows 

Kecman (2001).  To illustrate the algorithm, consider the problem of estimating the category s at any loca-

tion u over the domain A, based on the following set of n observed data: 

 { }( ); 1, , ; 1,2ks n kα = =αu …  (1) 

where k = 1,2 indexes the number of mutually exclusive categories s1, s2. The SVC algorithm seeks the 

weight parameter w and bias term b that characterizes a decision boundary (or a hyperplane) of the form: 

 0b+ =Tw u  (2) 

The boundary will separate the categories given on the observed data with a maximum margin (Figure 1) 

and it will assign a single category s1 or s2 to the unsampled locations u according to the rule: 
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The implementation of SVC has the following steps: (1) preprocessing of data, (2) SVC training and (3) SVC 

testing.  Each of these steps is described below. 

Preprocessing of data.  The SVC algorithm requires coding the observed data as: 
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Note that this coding will help to classify the unsampled locations based on the sign (positive or negative) 

of the SVC response rather than on its actual absolute value. 

 

SVC training. Finding the weighting parameters w and the bias term b of the decision boundary (2) using 

the observed data is referred to as training the SVC. In machine learning jargon the observed data is called 

the training set. The percentage of observed data misclassified by the decision boundary is called training 

error or empirical error. In this paper, the complement of the empirical error to add to unity is called em-

pirical accuracy. 
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 The boundary (2) is determined to maximize the margin of separation between the categories s1 

and s2 (Figure 1). If the data (1)  is linearly separable, the optimization problem is expressed as: 
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where ||w|| represents the Euclidean norm of the vector w. This nonlinear optimization problem with 

inequality constrains is solved using the Lagrange formalism and leads to the following results for w and b: 
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where ηα are Lagrange multipliers and Nsv is the numbers of support vectors; that is, training data whose 

ηα are not zero. Substituting (6) into (2) the boundary becomes: 
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An overlap of the categories may indicate that a plane that separates them does not exist. To deal with 

this case, the linear SVC was adapted (Cortes, 1995; Cortes and Vapnik, 1995) by the introduction of slack 

variables ξα (α = 1,…,n) in the optimization problem. The slack variables ξα relax the constraints in (5), so, 

some classification errors are permitted but at a certain cost. Now, the optimization problem is: 
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Here, P is a user-defined penalty parameter. The optimization problem has the same solution shown in (6)

, (7) and (8), the only difference is the bounds of the multipliers ηα 
that appear in the Lagrange formalism. 

To cope with data that is not linearly separable, the vectors u are mapped into a higher-dimensional space 

ℱ by a function Ф. In the space ℱ, the linear SVC algorithm is applied. The linear classifier in the space ℱ 

will create a non-linear decision boundary in the original input space (Figure 2). 

 The implementation of the SVC algorithm in the space ℱ is done by using a kernel; this consists of 

replacing the scalar product between training data with a kernel function in the formulation of the SVC 

algorithm. The kernel is a function in the input space of the vectors u, which returns the dot products of 

the images in some space ℱ, without even knowing the form of the map Ф: 

 ( ) ( ), ( )k = Φ Φα β α βu ,u u u  (10) 

SVC testing. SVC testing means to use the decision boundary found in the training step to allocate a single 

category s to the unsampled location u according to the rule: 
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where K(u, uα) is a symmetric positive-definite matrix with the values of the kernel function. 

 In the machine learning jargon the unsampled locations (or data not used in the training proce-

dure) taken together are called the testing set. The percentage of unsampled locations misclassified by 

the decision boundary is called testing error or generalization error. The complement of the generalization 

error to add to unity is called generalization accuracy. 
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 After training and testing the algorithm the final result is the assignment of a single category s1 or 

s2 to every unsampled location in the domain A.  

Implementations of SVC 

Implementing SVC requires choosing a kernel function with its parameters and the penalty parameter P. 

These decisions, also called model selection, are now discussed. 

Kernel selection (or kernel design). The design of kernel functions is a very active area of research in sup-

port vector machines; the goal is to generate the kernels tailored to the problem at hand to obtain the 

best possible performance. However, for many practical applications, good results are obtained selecting 

the function from a pool of basic licit kernels, such as the linear, the polynomial and the Gaussian radial 

basis function (Grbf). For an extensive and in depth description of these and other more complex kernels 

see Cristianini and Shawe-Taylor (2004).  

 The Grbf kernel is of special interest due to its versatility and previous good performance in geos-

tatistical applications (Wohlberg, Tartakovsky and Guadagnini, 2006 ; Pozdnoukhov and Kanesky , 2006; 

and, Kanesky et al. , 2001). It has the form: 

 ( )2
( ') exp ' ; 0k γ γ= − − >u,u u u  (12) 

where u and u’ represent any two different locations and γ is a kernel parameter that must be selected. 

Parameter selection. Training the SVC algorithm using the Grbf kernel implies simultaneous selection of 

the pair of parameters (P, γ), so that the boundary classifier can predict unsampled locations with the 

maximum generalization accuracy.  These two parameters are often selected using k-fold cross-validation. 

In k-fold cross-validation, the observed data is randomly divided into k equal sized subsets. Then, the SVC 

algorithm is sequentially trained using the k-1 subsets and tested in the remaining subset. Training is re-

peated k times and the percentage of data correctly classified for all the k subsets that are not included in 

the training data is recorded as the cross-validation accuracy (Abe, 2005, p. 73). The cross-validation accu-

racy, as a proxy of the generalization accuracy, is used to select the pair of parameters (P, γ). The typical 

approach calculates the k-fold cross-validation accuracy for every pair (P, γ) on a predefined grid-search 

and it chooses the one with the maximum value. To explore a wide range of parameter combinations, the 

grid is designed as an exponentially growing sequence of P and γ values (Hsu, Chang and Lin, 2008), for 

instance: P={2
-3

 , 2
-2

 , …. , 2
8
 , 2

9
} and γ ={2

-10
 , 2

-9
 , …. , 2

11
 , 2

12
}. The selected pair of parameters (P, γ) is 

used to train the SVC algorithm with the complete set of observed data.  More information about cross 

validation and for model selection can be found in Anguita, Boni, Ridella, Rivieccio and Sterpi (2005). 

 

Some examples 

The following examples were created to illustrate the type of problems that can be solved by SVC. There is 

no intention of (1) determining the advantages or disadvantages of SVC compared to other techniques, 

and (2) offering an in depth discussion of the results obtained.GSLIB (Deutsch and Journel, 1998), LIBSVM 

(Chang, C.-C. and C.-J.Lin, 2001) and MATLAB software were used in the construction of these examples.  

The Spatial Interpolation Contest (SIC) data set of 1997 was used in this paper. It consists of x, y locations 

in km and 467 rainfall measurements in 1/10th of mm. The rainfall measurements were transformed to a 

binary variable of low and high values using an arbitrary threshold of 100/10th of mm (Figure 3). The pro-

portions of high and low values are 74.0% and 26.0%, respectively. However, the spatially biased collec-

tion of the data suggests the application of a declustering technique to determine representative statis-

tics. The cell declustered proportions are to 65.0% and 35.0%, respectively. The domain was gridded with 

a resolution of 5 km x 5 km spacing (3500 nodes in total) that spans an area of 350 km x 250 km. 
Classification (Estimation): Assigning a single category s1 or s2 to unsampled locations based on observed 

data is the primary application of SVC. This application has been implemented by many authors with dif-

ferent degrees of success (Wohlberg, Tartakovky and Guadagnini , 2006;  Kanevski et al. , 2001 ). Figure 4 

shows the classification results obtained from the indicator kriging (IK) and the SVC algorithm. 

Post-processing (Cleaning): Figure 5 shows the result of cleaning a realization generated by sequential 

indicator simulation (SIS) with MAPS (Deutsch. C.V., 1998) and SVC. Applying MAPS with the default 

smoothing window results in a 5.8% change of the simulated values. In the SVC cleaning, the number of 

cells to change can be strictly controlled using the γ versus accuracy plot and γ versus number of support 

vectors plot (See Figure 6). 
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Local Refinement: Figure 7 shows that SVC can be used to locally refine areas of interest. The idea is to 

take advantage of the continuity of the boundary.  A grid 5000x5000x1 can be generated in fractions of a 

second if the boundary had already been determined. 

Comparison of spaces of uncertainty: Every set of realizations has its own “cloud” of γ vs accuracy curves 

and γ vs number of support vectors curves. These clouds can be used to characterize the spaces of uncer-

tainty of different simulation algorithms, for instance: SIS and TGS (Figure 8). 

Classification of realizations: This example shows that SVC can be used to classify realizations generated 

using different algorithms.  This may be practically useful to differentiate the modelling methodology used 

to construct legacy models, should this information be lacking.   

For this exercise, a label of interest (e.g. after processing the realization through a transfer function) is 

assigned to a small subset of realizations from two approaches. This subset is used to train the SVC algo-

rithm. The output hyperplane is used to classify the remaining unlabeled realizations. Figure 9 sketches an 

example where 60 realizations are taken out from a set of 200 realizations that consist of 100 realizations 

generated by SIS and 100 realizations TGS. 30 realizations were labeled as coming from SIS and 30 realiza-

tions were labeled as coming from TGS. These 60 realizations were used to train the SVC algorithm and 

the boundary hyperplane output was used to classify the 140 unlabeled realizations. The generalization 

accuracy for this example was over 90%, that is, over 90% of models were correctly classified based on 

the results of the modeling approach. 

 

Conclusions 

This paper introduces a relatively new algorithm in machine learning.  The examples show that support 

vector machines for the analysis of spatially distributed data is a wide open area of research. Exploring its 

applicability to old and new geostatistical problems is a worthwhile and promising endeavour. SVM also 

may open the window to consider the study of other kernel methods for geostatistical applications; these 

may include Kernel Principal Component Analysis, Least square SVM, and Kernel Ridge Regression. 
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Figure 1: Linear separable case. Basic SVC concepts: codification (±1), margin (M), weights (w) and sup-

port vectors. 

 

 
           Input space       Space ℱ 

Figure 2: The SVC algorithm applied in a high dimensional space will produce a non-linear classifier in the 

original input space. 

 

 
(a)                                                                              (b) 

Figure 3: Location map for sic97. (a) Original data and (b) transformed binary data. 
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Figure 4: IK map (top left), estimated values with cut-off of 50% probability (top right), classifier boundary 

and associated support vectors (bottom left), and SVC classified locations (bottom right). 

 

 
Figure 5:Top, original SIS realization. Bottom left, realization cleaned by MAPS. Bottom right, realization 

cleaned by SVC. 
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Figure 6: a) γ versus accuracy, b) γ versus number of support vectors, c) Boundary and support vectors for 

(log2γ,log2 P) = (0.5 , 10 ), d) Misclassified locations for (log2γ,log2 P) = (0.5,10). 

 

 
Figure 7: Example of local refinement. A grid 5000x5000x1 can be generated in a very short time. 
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Figure 8: Comparison of spaces of uncertainty SIS vs TGS (With and without cleaning).  

 

 
Figure 9: After training a SVC with 60 realizations (30 from SIS and 30 from TGS) the classification rates for 

140 unlabeled realizations were: SIS = 64/70 (91.42%) and TGS = 65/70 (92.85%) 
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