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Stochastic Inverse Modeling in a Mass Transport Problem 
 

Amir H Hosseini and Clayton V Deutsch 

 

The central idea in this paper is to develop an inverse modeling approach for characterization of 

uncertainty in residual NAPL dissolution rate and first-order biodegradation rate by tailoring the 

estimation of these parameters to distributions of uncertainty in source size and hydraulic conductivity 

field. Such modeling can be used as a screening tool for estimating plume length, total mass, and time of 

remediation in field applications. The modeling technique is based on sequential self-calibration approach, 

distance-function approach, and a gradient-based optimization. It is observed that tying the estimation of 

transport parameters to joint realizations of transmissivity field and source geometry can effectively 

characterize the uncertainty in these parameters under field conditions and reduce the uncertainty in the 

state variables. It is also observed that ranking and screening the realizations based on their objective 

function value can effectively reduce the uncertainty in the source sizes. 

 

Introduction  

Estimating the length of time required for natural processes to remove a particular contaminant from a 

groundwater system is a mass balance problem termed time of remediation problem. There is significant 

uncertainty associated with source properties and with contribution and efficiency of concentration 

reducing mechanisms. The important source properties are the source geometry and the dissolution rate 

of contaminant species into groundwater. The concentration reducing mechanisms are advection, 

dispersion, dilution, sorption, volatilization, and aerobic and anaerobic biodegradation.  

 Many biodegradation models that simulate complex kinetics have been developed. It is evident 

that many of the required kinetic parameters for these models can not be measured or estimated by 

routine natural attenuation protocols. Simpler approaches with limited number of parameters are often 

preferred as they can be supported by the available data (Essaid et al. 2003, Rifai and Rittaler 2005). 

Application of first-order reaction models is common in natural attenuation studies, particularly at 

screening level. Based on the concentrations measured at monitoring locations, the field-scale first-order 

rates are estimated by trial and error calibration (Borden et al. 1986), by inverse modeling techniques 

(Medina and Carrera 1996) or by field approaches such as mass-flux (Borden et al. 1997) and 

concentration-distance relationships (Buscheck and Alcantar 1995). The parameter estimates by trial and 

error calibration are modeler dependent and a measure of uncertainty is not often available. Among the 

inverse modeling techniques, none of them quantifies the confidence in the estimated first-order rates 

under uncertainty of source properties and hydraulic conductivity distribution. In the case of field 

estimation techniques, the estimated first-order rates are affected by heterogeneity.   

 Understanding of the NAPL source dissolution rate is another important factor when 

investigating different aspects of a TOR problem. A number of experimental (Imhoff et al. 1994), pore- 

and field-scale numerical (Dillard et al. 2001, Christ et al. 2006) and inverse modeling studies (Sciortino et 

al. 2000) have been reported to estimate NAPL dissolution rate. None of the above inverse modeling 

techniques deals with characterization of source properties when the reaction rates are uncertain.  

 Simultaneous characterization of uncertainty in rate-limited dissolution and field-scale 

biodegradation is important. Essaid et al. (2003) implemented an inverse modeling in an optimal sense to 

estimate NAPL dissolution rate and individual first-order biodegradation rates for BTEX compounds as 

well as other parameters such as recharge rate, hydraulic conductivity, and transverse dispersivity. They 

only achieved convergence when they estimated a single dissolution rate for all BTEX compounds through 

simultaneous use of oxygen during aerobic biodegradation (cross-over effect). In other words, they failed 

to estimate individual dissolution rate and first-order biodegradation rate constants for each BTEX 

compound due to high correlation between these parameters that results in parameter non-uniqueness. 

The issue of parameter non-uniqueness is discussed in Hosseini and Deutsch (2009).  

 For groundwater management purposes in the field-scale, the worth of monitoring data can be 

used to estimate these parameters through inverse modeling. These estimates, however, will be affected 

by uncertainty in model structure (source size) and other flow and transport parameters, such as 
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distribution of hydraulic conductivity and dispersivities. In this paper, the non-linear confidence intervals 

of first-order biodegradation rate constant and dissolution rate constant are estimated under uncertain 

source geometry and aquifer transmissivity through a simple inverse modeling approach. Tailoring the 

estimation of dissolution rate and first-order biodegradation rate to distributions of uncertainty in the 

source geometry and transmissivity field through Monte Carlo type inverse modeling helps to (1) 

characterize the inherent uncertainty in the values of these parameters, (2) reduce the uncertainty in the 

state variables and size and shape of the plume, and (3) possibly reduce the uncertainty in the source 

sizes by ranking the conditional realizations based on the values of the objective function.      

 

Methodology  

A decoupled approach has been adopted in this work: first, sequential-self calibration approach is 

implemented to generate multiple realizations of transmissivity field conditioned to transmissivity and 

head data, these realizations are then combined with realizations of source size to create multiple 

realizations of source/transmissivity, dissolution rate and first-order biodegradation rate constants are 

then estimated for each joint realization to characterize the uncertainty in these parameters and reduce 

the uncertainty in the state variables. The forward steady-state flow and transport problems are 

represented by: 
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where, ki, h, qsr, C, Dij, vi, kdis, C
eq

, and λ represent hydraulic conductivity, hydraulic head, dispersion 

coefficient, seepage velocity, NAPL dissolution rate constant, equilibrium concentration, and first-order 

biodegradation rate constant. The equilibrium concentration is expressed by: 
soleq
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where, sol

sC is the solubility limit for pure substrate in water, and fs is mole fraction of the species s in the 

mixture of organic and intert/non-biodegradable materials and can be calculated by (Parker et al. 1991): 
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where, Ss
NAPL

 is the mass of substrate s per unit mass of dry soil, and Tt
NAPL

 represents the equivalent mass 

of all inert and non-biodegradable materials t per unit mass of dry soil, ωs is the molecular weight of 

substrate s, and ωt is the equivalent molecular weight of mixture of all non-biodegradable and inert 

(insoluble) materials. The fraction 
t

NAPL

tT ω/ can be calculated by:  
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where, NAPL

liI , NAPL

ltTR , ωli and ωlt represent each inert and tracer (non-biodegradable) material and their 

associated molecular weights, respectively. The NAPL mass of substrate s per unit mass of dry soil (Ss
NAPL

) 

decreases as the dissolution occurs. This process can be represented by (Waddill and Widowson 1998):  
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where, ρb is the bulk density of the porous medium and NAPL

sR  represents the mass transfer rate given by: 
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Thus, due to dissolution of NAPL into groundwater, soil NAPL concentration decreases and aqueous 

concentration increases. In Equation [2], the only term on the left hand side accounts for change in 

concentration with time (a transient problem); the first term on the right hand side represents the 

hydromechanical dispersion; the second term represents advection; the third term represents dissolution; 
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and the forth term represents first-order biodegradation. This equation should be solved numerically to 

find the distribution of dissolved species concentration in space and time. A simple steady-state 

groundwater flow simulator, flsim2d has been developed for groundwater flow; and a Lagrangian-

Eulerian approach, the method of characteristics, has been programmed into the code snasim to solve 

Equations [1] and [2]. 

 The uncertainty in the hydraulic conductivity field is characterized by sequential-self calibration 

approach (SSC). The details of this approach can be found in (Gomez-Hernandez et al. 1997). The 

uncertainty in the source geometry based on the existing well arrangement can be modeled by the 

distance function approach. The uncertainty in areal limits is addressed by: 
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where, α and β are scaling and separation factors that define a unique uncertainty band and must be 

calibrated against a large number of synthetic realizations. The objective function for mass transport 

inverse problem is defined by:  
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where, 
iC , m

iC , qi and cvi are simulated concentration, measured concentration, source size quantile and 

coefficient of variation associated with each observation. In order to solve the inverse problem and 

estimate the values of kdis and λ, one needs to calculate sensitivity coefficients that can be calculated by 

sensitivity equations: 
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where, α represents either kdis or λ. The minimization of objective function (Equation [9]) and 

optimization of the transport parameters can be implemented through modified Gauss-Newton approach 

(Cooley and Naff 1990):  
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where, C is the diagonal scaling matrix, Xr is the matrix of sensitivities, ωωωω is the matrix of weights, y is the 

vector of observed concentrations, y(br) is the vector of simulated concentrations, and mr is the 

Marquardt parameter. In each iteration of the Modified Gauss-Newton approach, the vector of estimated 

parameters is updated by addition of an updating vector dr multiplied by a damping parameter ρr: 

rr1r bdb +=+ rρ                                                                                                                                            [12] 

where, br and br+1 are the vectors of the estimated parameters in two consecutive iterations. The damping 

parameter ρr preserves the direction of dr and ensures that the changes in the parameters remain less 

than the maximum allowed change specified by the user and has a damping effect on likely oscillations 

that may occur due to opposite directions in consecutive updating vectors (dr and dr-1). In the modified 

Gauss-Newton method, the updating vector dr is calculated by Equation [11].  

Synthetic Example – Error free observations 

A synthetic example is presented to investigate the performance of the Monte Carlo type decoupled 

inverse modeling in characterization of uncertainty in the dissolution rate and first-order biodegradation 

rate and to study the effects of error in observed data in the modeling outcomes. A synthetic hydraulic 

conductivity dataset, two different head observation datasets with two different levels of measurement 

error, and four concentration datasets are sampled from the reference study sites. Applying the SSC 

approach, the sampled hydraulic conductivity and head data are used to create multiple realizations of 

hydraulic conductivity field conditioned to both hydraulic conductivity and head measurements. The 

distance function approach is used to create multiple realizations of areal extent of the source zone. 

Inverse modeling is then implemented to estimate the values of dissolution rate and first-order 

biodegradation rate constants for the sets of joint realizations of source geometry and hydraulic 

conductivity fields. The performance of the methodology is investigated through studying the 

distributions of the estimated parameters and source zone sizes and comparing the variations of the state 
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variables (e.g. plume length and mass loaded into the aquifer) through time with those of the reference 

study sites. The simulated state variables are also compared to the results of a set of Monte Carlo 

simulations performed using kdis and λ distributions that represent the range of variability that may be 

observed under realistic field conditions. The effects of head and concentration measurement errors on 

the estimation of kdis and λ and the predictions of the state variables are also investigated.    

 Figure 1 shows the reference study site with the sampling locations, the suspected source zone 

area, the reference hydraulic conductivity field and the associated head response. The reference hydraulic 

conductivity field shown in Figure 1-b has a Gaussian distribution in natural logarithmic units with a mean 

of -10.1 logem/s, standard deviation of 1.2logem/s, and a spatial correlation defined by a spherical 

variogram with a nugget effect equal to 0.1 and a range of 32.0 m. The modeling domain is 250m by 

160m, which is descritized by 2.0m × 2.0 m squared shape grid cells. The flow boundary conditions involve 

fixed head boundary conditions at the north and the south of the site equal to 4.0m and 2.0m, 

respectively. At the east and west of the site, no-flow boundary conditions are assigned. As shown in 

Figure 1-a, there are a total of 40 observation wells where piezometric heads (steady-state) and 

concentrations are sampled. There are 11 of these wells (shown by blue circles), with hydraulic 

conductivity measurements. The solid black wells indicate the observation wells where residual NAPL has 

been observed. Figure 2-a shows the calibrated uncertainty band for the given well arrangement and 

suspected source area. The associated optimal values of scaling factor α and separation factor  are 3.56 

and 15.86, respectively. To investigate the performance of the methodology when the actual source size 

deviates from the average source size that is characterized by the distance function approach, three 

source sizes corresponding to lower quartile, median and upper quartile of the calibrated uncertainty 

band are considered as reference cases for source geometry. Figure 2-b shows the CDF of the source sizes 

associated with the calibrated uncertainty band in Figure 2-a and the selected quartiles. According to 

Figure 2-b, the reference source sizes (p25, p50 and p75 quartiles) have areas equal to 643 m
2
, 938 m

2
, and 

1395 m
2
.  Figure 3 shows the simulated plumes for the smaller source size. For simplicity, it has been 

assumed that the distribution of residual NAPL (soil concentration) within the areal limits of the source 

zone is uniform. Variability within areal limits can easily be incorporated. The uniform soil concentration 

of NAPL is set to 10gr/Kg. The initial mass fraction of the substrate (e.g. Benzene) in NAPL is equal to 0.01. 

The substrate solubility, substrate and inert molecular weights are set equal to 0.00178gr/cm3, 78.1 and 

101gr/mole, respectively. Dry soil density, total porosity and effective porosity are set equal to 1.6gr/cm3, 

0.35 and 0.3, respectively. The longitudinal and transverse dispersivities, dissolution rate and first-order 

biodegradation rates are equal to 1.5m, 0.3m, 0.0015day
-1

 and 0.006day
-1

, respectively. Zero dispersive 

flux boundary conditions are assigned at all boundaries. Two synthetic observed datasets for piezometric 

heads are created by sampling from the reference piezometric head distribution and subsequent addition 

of Gaussian noise. The first set of head observations is considered to be error-free. The second head 

dataset is considered to be noisy by addition of Gaussian noise with a standard deviations of σnH =0.20m.  

 Applying the SSC technique, two sets of 300 realizations of hydraulic conductivity field 

conditioned to both hydraulic conductivity and head measurements are constructed form two levels of 

head measurement errors (σnH =0.0m and σnH =0.20m), and combined with realizations of source 

geometry to create two sets of 300 joint realizations that are used in subsequent estimation of kdis and λ. 

In terms of the synthetic concentration datasets,  an error-free concentration dataset is sampled from the 

simulated plumes (a total of 520 samples at 40 observation wells over a period of two years – from 5 to 7 

years from the start of the simulations). To investigate the effects of errors in measured concentrations 

on the modeling outcomes, Gaussian noise is added to the synthetic concentration dataset sampled from 

the first reference case with smaller source size. The added Gaussian noise has a coefficient of variation 

equal to cvnc =0.35. To study the importance of tailoring the estimation of first-order biodegradation rate 

constant and dissolution rate to realizations of source geometry and hydraulic conductivity, the results of 

the decoupled inverse modeling including the simulated state variables should be compared to the 

available field-scale parameter estimation techniques. Due to the fact that the proposed methodology is 

aimed to be an advanced screening tool for characterization of uncertainty in the field-scale parameters, 

its outcomes should be compared to the outcomes of similar screening tools commonly applied to the 

field. For this purpose, a set of Monte Carlo simulations (MCS) are performed with (1) realizations of 
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hydraulic conductivity conditioned to conductivity and head data by SSC, (2) realizations of source extend 

characterized by the DF algorithm in Figure 6-2-a, (3) the values of first-order biodegradation rate drawn 

from a distribution reported by Bauer et al. (2006), and (4) the values drawn from a distribution of 

dissolution rate constant representing the uncertainty in a realistic field condition. Bauer et al. (2006) 

showed that the field-scale method of normalization to a recalcitrant co-contaminant (Wiedemeier et al. 

1996) that corrects for the effects of uncertainty in the value of longitudinal dispersivity gives the closest 

estimate to the true value of the first-order biodegradation rate constant. For an aquifer with a log-

normal hydraulic conductivity distribution with a mean of -9.54 log e m/s and a standard deviation of 1.3 

logem/s, Bauer et al. (2006) showed that the method of normalization to a recalcitrant co-contaminant 

overestimates the true first-order rate (on average) by a factor of two, while the standard deviation of the 

normalized rates is equal to 2. Similar results were found by Bauer et al. (2007) for the improved method 

of Stenback et al. (2003) with off-centerline measurements. Figure 4-b shows a distribution of first-order 

biodegradation rate similar to the distribution observed by Bauer et al. (2006) based on normalization to a 

recalcitrant co-contaminant. To investigate the effect of variability in the dissolution rate, a uniform 

distribution with an order of magnitude variability (which seems to be a lower bound to variability in this 

parameter based on the observations in Dillard et al. 2001 and Christ et al. 2006) and a mean equal to 

0.0066 day
-1

 (computed by Essaid et al. (2003) for Bemidji site) is considered (Figure 4-a). Figure 5 shows 

the variations of the mass loaded into the aquifer and the plume length in time for the reference case as 

well as the mean and quartiles of the state variables based on the results of the Monte Carlo simulations 

with 100 joint realizations of hydraulic conductivity field and source geometry and the values of kdis and  

drawn from the distributions in Figures 4-a and 4-b. Figure 6 shows the probability map for the 

concentrations to exceed a threshold value of 0.005 mg/L (water quality standard for benzene). Figures 5 

and 6 show that the MCS may result in large uncertainties in the dimensions of the simulated plume as 

well as the mass loaded into the aquifer. The distribution of the parameters shown in Figure 4 and the 

MCS results shown in Figures 5 and 6 will be compared to the results of inverse modeling.  

 Figure 7 shows the histograms of the estimated kdis and λ for the 100 joint realizations that are 

calibrated to concentration measurements from the smaller reference case. It has been assumed that the 

head and concentration measurements are error-free. Figure 8 shows the variations of the mass loaded 

into the aquifer and the plume length through time for three sets of 100 realizations corresponding to the 

smaller reference case. Figure 9 shows the probability maps for concentrations to exceed a threshold 

value of 0.005 mg/L for the smaller reference case. As expected, the dissolution rate constant is slightly 

under-estimated for the case with the smaller reference source zone. The proposed approach significantly 

reduces the uncertainty in the state variables (comparing to the results of the Monte Carlo simulations). 

Although the ensemble of realizations on average over/under-estimates the reference values, for both 

state variables, the reference curve falls within the 90% non-linear confidence interval. Comparing Figure 

9 to Figure 6, it is also evident that the estimation of dissolution rate and first-order biodegradation rate 

for joint realizations of hydraulic conductivity and source geometry using concentration data can 

significantly reduce the uncertainty in the dimensions of the plume. The observed over-estimation and 

under-estimation of the state variables is partially due to unresolved uncertainties in the source size 

which can not be fully handled by adjusting the values of kdis and λ by the model. Thus, a ranking-based 

screening can be applied (Similar to the work of Poeter and McKenna 1995) to choose from the set of 

realizations based on the values of the modified objective function and to decrease the uncertainty in the 

source zone sizes previously characterized by the distance-function approach. To investigate the 

effectiveness of ranking on the reduction of uncertainty and to have enough realizations to explore the 

space of uncertainty, 300 joint realizations of hydraulic conductivity (conditioned to head data with σnH 

=0.0 m) and source geometry are constructed and the concentrations sampled from the three reference 

cases (with cvnc =0.0) are used to estimate the values of dissolution rate constant and first-order 

biodegradation rate. Figure 11 shows the CDF of the source sizes for 100 realizations (out of 300 

realizations) having smallest values of modified objective function defined by Equation [9]. 

 Comparing Figure 11 to Figure 2-b, one can observe that ranking and screening the realizations 

can effectively reduce the uncertainty in the source zone sizes for each reference case. To further 

investigate the effect of ranking, one may also look at Figure 10 where the cross-plot of dissolution rates 
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and source size quantiles is shown. The color-scale represents the rank of each realization based on the 

value of the modified objective function (black shows lower values of the modified objective function, 

higher ranks and therefore accepted realizations). For this example, Figure 10 shows that (1) there is a 

negative correlation between the size of the source the estimated dissolution rate; and (2) ranking of the 

realizations can effectively identify the joint realizations that have not properly converged in optimization 

(solid circles) and the joint realizations that have source sizes that deviate from the reference source size 

(dashed circles). Figures 11 and 12 show the cross-plots between the dissolution rate and first-order 

biodegradation rate constant and the cross-plots between the source size quantile and first-order 

biodegradation rate (after ranking). According to Figure 13, there exists a positive correlation between 

first-order biodegradation rate and dissolution rate. Looking at Figure 14, one observes that there is little 

correlation between the values of source quantile and first-order biodegradation rate. The observations in 

Figures 10, 12 and 13 justify the importance of simultaneous characterization of uncertainty in source 

areal extent, source dissolution rate and first-order biodegradation rate. Figures 14 to 16 show the 

estimated parameters, the associated state variables and the probability maps after ranking and 

screening based on the values of the modified objective function. According to Figures 10 to 16, one can 

conclude that (1) reduction in the uncertainty of the source zone sizes appears to be achievable by 

ranking and screening the realizations based on the values of the modified objective function (Equation 

[9]); (2)  for this purpose, an appropriate number of realizations should be selected; and (3) by reducing 

the uncertainty in the source zone sizes, there will be reductions in the associated uncertainty in the 

estimated parameters values and the state variables. 

 

Synthetic Example – Erroneous observations 

In practice, it is quite rare to consider the observation data as error-free. Due to the fact that the 

proposed methodology is a decoupled approach, one may generate hydraulic conductivity realizations 

honoring a particular level of error in head observations (measure of fit s close to one); and then estimate 

the rate constants for the joint realizations, while calibrating to concentrations with a particular level of 

error in the data values. In the subsequent analysis, Gaussian noise (with a relatively large standard 

deviation/coefficient of variation) has been added to the head observations and concentration 

measurements associated with the smaller reference case. It is assumed that (1) a good knowledge of 

magnitude of error exists in the observations, (2) the error in observations is Gaussian noise with a mean 

equal to zero (no systematic bias is introduced), and (3) errors at different locations and for heads and 

concentrations are independent of each other. As it can be observed in the following example, 

uncertainty in the estimated parameters and the predicted state variables increases with an increase in 

the measurement errors. Comparing Figures 17, 19 and 18 to Figures7, 8 and 9, one can observe that 

introducing measurement errors to heads and concentrations results in (1) considerable increase in the 

standard deviation of the estimated parameters, (2) larger deviation of the average biodegradation rate 

constant from the reference value, (3) introducing more uncertainty and bias in the estimation of the 

length (and width) of the plume and (4) increasing the uncertainty in the estimation of mass loaded into 

the aquifer.  

 

Conclusions 

This paper presented a modeling approach and a synthetic example to investigate the performance of the 

decoupled inverse modeling approach in characterizing the uncertainty in the dissolution rate and first-

order biodegradation rate and reducing the uncertainty in the associated state variables. A reference case 

with smaller source size was considered. First, a set of Monte Carlo simulations were implemented whose 

results were subsequently compared to the results of the inverse modeling methodology. Comparing the 

results of the Monte Carlo simulations to the results of inverse modeling for the smaller reference case, it 

was observed that tailoring the estimation of first-order biodegradation rate and dissolution rate to 

distributions of uncertainty in the source geometry and hydraulic conductivity field results in 

characterization of uncertainty in these parameters and significant reduction of uncertainty in the state 

variables, being mass loaded into the aquifer and the dimensions of the plume. Although the reference 

values always fell within 90% confidence interval, a bias was observed in the prediction of the reference 

state variables by the ensemble of simulated realizations. This bias was deemed to be partially due to 
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large variabilities in the size of the source zone which cannot be fully resolved by adjusting the values of 

dissolution rate and first-order biodegradation rate. In this work, it was observed that ranking and 

screening the conditional realizations based on the value of modified objective function (Chapter 5) can 

effectively reduce the uncertainties in the size of the source zone and uncertainty and bias in the 

prediction of the state variables. The value of the modified objective function is deemed to be 

independent of overall level of concentrations in the modeling domain due to the fact that it is a 

dimension-less number and a normalization that takes place by defining the weights inverse proportional 

to the value of simulated concentrations. On the other hand, the number of realizations that are kept 

after ranking and screening may be considered ‘problem dependent’ for a large part. Despite this 

apparent subjectivity, it was observed through a sensitivity analysis that ranking the realizations and 

keeping any number of realizations can still be useful as it can give a general idea about the size of the 

source, while reducing its uncertainty. The importance of simultaneous characterization of uncertainty in 

the parameters was investigated through cross-plots of the parameters, where it was observed that a 

positive correlation exists between the values of dissolution rate and first-order biodegradation rate, a 

negative correlation exists between the values of dissolution rate and source size quantile and little 

correlation exists between first-order biodegradation rate and source size quantile. To investigate the 

effects of errors in observation data on the modeling outcomes, relatively large levels of observation 

errors (Gaussian noise with a mean of zero and pre-specified standard deviation/coefficient of variation) 

were added to head and concentration observations and the transport parameters were estimated. 

According to the results, existence of Gaussian noise in the data resulted in an increase in the uncertainty 

and bias of the estimated parameters and the predicted state variables. Comparing these results to the 

results of Monte Carlo simulations indicated that even if the observed data are subject to a relatively large 

level of Gaussian noise, the uncertainty in the predicted state variables are still smaller than the results of 

Monte Carlo simulations.  
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Figure 1: (a) The reference study site with monitoring locations and suspected source zone area (dashed 

box), (b) the reference hydraulic conductivity field, and (d) the reference hydraulic head distribution. 

 

 

 
Figure 2: (a) The calibrated band of uncertainty for the contaminant source zone, and (b) the CDF of the 

source sizes. 

 

 

 
 
Figure 3: (a) The smaller source zone size corresponding to p25 of the calibrated uncertainty band, (b) the 

simulated plume after 550 days, (c) the simulated plume after 1281 days, and (d) simulated plume after 

2562 days. 

 

(a) 
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Figure 4: The distribution of uncertainty in (a) the dissolution rate constant and (b) the first-order 

biodegradation rate constant, used in the subsequent MCS. 

   
Figure 5: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of ensemble of realizations) and 

reference (p50 source size) (a) total mass loaded into the aquifer and (b) plume length based on the results 

of the MCS. The reference curve is associated with the median source size (Figure 5-24) 

 
Figure 6: The probability of concentrations exceeding 0.005 mg/L based on the results of the Monte Carlo 

simulations 

 
Figure 7: The histograms of (a) kdis and (b)  for the case with nH = 0.0 m and cvn = 0.0 and the smaller 

reference source size. 
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Figure 8: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of ensemble of realizations) and 

reference (a) total mass loaded into the aquifer and (b) plume length for the smaller reference source 

size. 

 
Figure 9: The probability of concentrations exceeding 0.005 mg/L after conditioning to concentrations for 

the smaller reference case 

 
Figure 10: The cross-plot between the source size quantiles and the estimated dissolution rate. The solid 

circles show the realizations that are likely not converged and the dashed circles show the realizations 

that their source sizes significantly deviate from the reference source size. The color scale shows the rank 

of realizations based on their modified objective function value (black represents lower values of the 

objective function) 

 
Figure 11: The CDF of the source sizes of the 100 accepted realizations after ranking based on the 

modified objective function value. The red arrows show the reference source size for each case. 
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Figure 12: The cross-plot between the dissolution rate constant and firs-order biodegradation rate 

constant for the reference case with smaller source size (p25) with a correlation coefficient equal to 0.438. 

 
Figure 13: The cross-plots between the source size quantile and first-order biodegradation rate constant 

for the reference case with smaller source size (p25) 

 
Figure 14: The histograms of (a) kdis and (b)  for the accepted realizations after ranking, based on the 

reference case with the smaller source size. 

 

    
Figure 15: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of ensemble of realizations) and 

reference (a) total mass loaded into the aquifer and (b) plume length for the smaller source size after 

ranking. 
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Figure 16: The probability of concentrations exceeding 0.005 mg/L after conditioning to concentrations 

and ranking for the smaller reference case 

 
Figure 17: The histograms of (a) kdis and (b)  for the case with nH = 0.2 m and cvn = 0.3 and the smaller 

reference source size. 

 
Figure 18: The probability of concentrations exceeding 0.005 mg/L for the case with nH = 0.2 m and cvn = 

0.3 and the smaller reference source size. 

   
Figure 19: The variations of simulated (p05, p25, p50, p75, and p95 quantiles of ensemble of realizations) and 

reference (a) total mass loaded into the aquifer and (b) plume length for the case with nH = 0.2 m and cvn 

= 0.3 and the smaller reference source size. 


