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Automatic Determination of Uncertainty versus Data Density 
 

Brandon Wilde and Clayton V. Deutsch 

 

It is useful to know how various measures of uncertainty respond to changes in data density.  Calculating 

the change in uncertainty for different data densities required the practitioner to run numerous separate 

modeling and post-processing programs.  This process has been streamlined into one program.  The 

uncertainty measures calculated by this program are discussed.  The results are sensitive to a number of 

input parameters.  These sensitivities are reviewed.  A new method for non-parametrically fitting a 

monotonic increasing or decreasing function is presented. 

 

Introduction 

The exploration of a geological resource requires a decision to be made regarding adequate data density.  

This decision guides the sampling effort.  Three strategies have traditionally been used to determine the 

adequate data density:  1) to minimize the sampling cost for a specified level of uncertainty;  2) to 

minimize uncertainty for a given sampling budget; or  3) to respond to demands on sampling made by the 

legal authorities (Back, 2007).  The latter two strategies are relatively straightforward.  For a given budget, 

the sampling pattern that minimizes uncertainty has been determined (see McBratney, 1981).  Regulatory 

requirements often leave the practitioner with little choice regarding the field measurement design.  The 

first of these three strategies is the most ambiguous.  Minimizing sampling cost is straightforward, but 

determining a measure of uncertainty as well as an adequate level of uncertainty is not.  These factors 

must be determined in order to make the correct decision regarding data density.   

 Numerous methods have been applied to determine an adequate data density, primarily in the 

area of groundwater sampling.  One of the most popular methods has been to minimize the global 

estimation variance by optimizing the locations of the data (Carrera et.al, 1984; Fiering, 1965; Hughes & 

Lettenmaier, 1981; Loaiciga, 1989; Rouhani, 1985; and Virdee & Kottegoda, 1984).  Criminisi et.al (1997) 

chose to minimize the coefficient of variation of the optimal cost distribution while Aspie & Barnes’ (1990) 

objective was to minimize the expected cost of classification errors.  Each of these methods determines 

an optimum configuration, but none examines the dependence of uncertainty on data density.   

 Uncertainty, of course, does not depend solely on data density.  A number of other factors also 

influence uncertainty including local grade level, spatial variability of the grades, economic selection 

thresholds, scale, and uncertainty in the modeling parameters.  We primarily consider the relationship 

between uncertainty and data density.   

 It is useful to define the geometric measures used to describe data positioning such as drillhole 

spacing, drillhole density, and closeness to the nearest drillhole.  These measures are related.  They are 

illustrated and defined mathematically in Figure 1.  Data spacing is simply the distance between adjacent 

data locations.  For data located on a regular grid, the spacing is measured in two perpendicular 

directions.  Data density is the number of data within some nominal volume or area.  It is common to 

consider the number of data per section (1 mile x 1 mile) or data per hectare (100m x 100m).  These 

measures are related.  1 sample/hectare is equal to 259 samples per section.  When data are irregular, it 

is common to used data density to calculate effective data spacing.   

 We examine how various measures of uncertainty are related to data density.  The methodology 

for determining various measures of uncertainty for different data spacings is presented.  The concept of 

uncertainty is discussed as it applies to varying data density.  Various measures of uncertainty that are 

calculated for given data spacings are briefly discussed.  The process for summarizing the results of 

uncertainty calculations for many data densities is explained.  Results are given for a number of different 

input statistics.   

 

Methodology 

A methodology has been developed for determining uncertainty for different data densities.  The process 

of determining uncertainty for a given data density is as follows.   

1. Generate unconditional ‘truth’ realization 
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2. Sample truth realization at desired spacing with error 

3. Use samples to generate conditional realizations 

4. Calculate uncertainty measures from the realizations 

This can be done for many ‘truth’ realizations for the given spacing.  The details of each of these steps are 

given.   

 A realization of the truth is generated through unconditional sequential Gaussian simulation.  

The desired covariance structure of the truth is input through a variogram model.  The unconditional 

simulation is performed in Gaussian units and then back transformed according to an input reference 

distribution.  The high resolution point estimates are block averaged and these block values are saved as 

the truth.   

 From the back transformed point estimates, ‘samples’ are taken at a specified spacing.  Sampling 

error is added to these samples to simulate true sampling procedures and their inherent error.  The 

sampling error is proportional to the sample value.  The user specifies the standard deviation of the error 

as a proportion of the true sample value.  This is the value, X, in equation (1).  The standard deviation is 

then multiplied by a random standard normal value (Y in equation (2)) and this value is added to the true 

value to get the sample value (equation (2)).   

 These samples are considered as conditioning data and are normal scored to have a mean of zero 

and a standard deviation of one. They are then used to generate conditional Gaussian realizations at the 

same resolution as the point estimates.  The simulated values are back transformed and block averaged to 

the same resolution as the simulated truth.  Uncertainty measures are then calculated from the block 

averaged realizations. 

 

Uncertainty and its Measures 

Uncertainty is exactly what the word implies, a lack of complete certainty, that is, the existence of more 

than one possibility where the true outcome/state/result/value is not known (Hubbard, 2007).  As it 

applies to the geological sciences, uncertainty can be defined as the state of having limited knowledge 

where it is impossible to describe the existing state.  It is easy to understand the relationship between 

data density and uncertainty: increased data density will lead to decreased uncertainty, that is, increased 

certainty regarding the existing state.  Uncertainty is described and quantified through various measures.  

A measure of uncertainty is defined as a set of probabilities assigned to a set of possibilities (Hubbard, 

2007).   

 There are numerous measures of uncertainty that could be compared for different data 

densities.  The measures of uncertainty considered here include two measures of spread: standard 

deviation and the difference between the 90
th

 and 10
th

 percentiles; two relative measures of spread:  

coefficient of variation and the difference between the 90
th

 and 10
th

 percentiles divided by the 50
th

 

percentile; a measure of precision: the probability of a simulated value to fall within a given distance from 

the mean; and two classification measures: the probability of Type I and Type II errors. 

Each of these measures is discussed individually.  An example is shown for each measure. 

Standard Deviation 

At a location there are L simulated values where L is the number of realizations.  The standard deviation 

of these L values is determined.  The expected standard deviation is determined by considering all 

locations.  This value is reported for the given data density.  Standard deviation decreases as data density 

increases as illustrated in Figure 2a. 

P90-P10 

From the L simulated values at a location, the 10
th

 and 90
th

 percentiles can be determined.  The difference 

in these values is reported for the given data density.  The difference decreases as data density increases 

as shown in Figure 2b.   

Coefficient of Variation 

The coefficient of variation is the ratio of the standard deviation to the mean.  The mean and standard 

deviation of the L simulated values at a location are determined and their ratio reported for the given 

data density.  This ratio decreases as data density increases as illustrated in Figure 2c.   

(P90-P10)/P50 
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In addition to the 10
th

 and 90
th

 percentiles, the 50
th

 percentile is determined from the L simulated values.  

The ratio of the difference between the 10
th

 and 90
th

 percentiles to the 50
th

 percentile is reported for the 

given data density.  This ratio decreases with increasing data density as shown in Figure 2d.   

Precision 

Precision is measured as the probability of an estimate to be within a given distance from the truth.  For 

example, what is the probability of the estimate to be within ±15% of the truth.  The truth is taken as the 

mean of the L simulated values and the probability is the number of simulated values that are within the 

given distance divided by L.  This probability is reported for the given data density.  As data density 

increases, so also does this probability as illustrated in Figure 2e.   

Type I & Type II Errors 

Type I and II errors are used to describe possible errors made in a decision making process.  In this 

context, they are only useful with respect to some critical threshold, or cutoff grade.  The type I error 

refers to classifying a block as ore when it is really waste (false positive) while the type II error refers to 

classifying a block as waste when it is really ore (false negative).  Both of these errors decrease with 

increasing data density.  The probability of misclassification is sensitive to the cutoff value.  Overall, the 

probability of misclassification decreases as data density increases as shown in Figure 2f.   

 

Program 

The process of determining these measures of uncertainty for various data spacings has been developed 

within the program datspacsim which was built off of the code for the sgsim program.  Various 

parameters have been added and removed from the sgsim parameter file (Figure 3).  The input data file 

parameter and its associated parameters have been removed as no conditioning data is required.  The 

output file is now the first parameter as seen on line 4.  Line 5 specifies the output file for the monotonic 

non-parametric fitting described later.  The file with the reference distribution is entered on line 6.  The 

typical reference distribution parameters comprise lines 7-11.  Line 12 specifies the resolution of the point 

estimates in the horizontal plane.  Line 13 enters the size of the blocks into which the point estimates are 

averaged.  The block size must be a multiple of the point spacing.  Line 14 controls the number of cells in 

the model by determining the number of samples to consider in the x and y directions.  On line 15, the 

parameter that specifies the number of data spacings, n, to consider is given.  The next n lines are where 

the data spacings in the x and y directions are given.  The vertical grid parameters are specified on line 19.  

Line 20 specifies how many reference models to generate per data spacing and line 21 establishes the 

number of realizations to generate per reference model.  The percent sampling error is specified in Line 

22.  This is the value, X, used in equation (1).  The standard deviation of the sampling error is proportional 

to the sampled true value.  It is multiplied by a value drawn randomly from the standard normal 

distribution and this value is added to the sampled true value to give the sample value at that location as 

shown in equation (2).  The critical threshold option and value are entered on Line 23.  The desired 

confidence interval to report is given on line 24.  The rest of the parameters are the same as for sgsim and 

are for entering the random number seed and variogram model (Deutsch & Journel, 1998).   

 
100%

error true

X
zσ = i  (1) 

 samp true error
z z Y σ= + i  (2) 

 

Data density is the preferred measure for comparing to the various uncertainty measures.  Unfortunately, 

data density is not as easy to visualize as data spacing.  To account for the increased ease of thinking in 

terms of spacing, the user enters the desired x and y data spacing in the parameter file.  The program 

then converts this measure into Effective Areal Data Density (EADD) to take advantage of the linear 

relationship between data density and data quantity.   

 For each data spacing, a number of truth and estimates models are generated.  The uncertainty 

measures are averaged and written out giving one value for each uncertainty measure.  A distribution of 

uncertainty could be considered.  The monotonic non-parametric fitting procedure described herein is 
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employed to create a monotonic fit to the results.  The results of this fitting are written out to the file 

specified in line 5.  These measures can be plotted using scatplt2008.

 

 

 

Demonstration 

The measures of uncertainty are sensitive to a number of input parameters including the reference 

distribution, variogram, scale, number of realizations, and the classification threshold.  This section 

demonstrates how uncertainty responds to each of these parameters.   

Reference Distribution 

The spread of the histogram affects uncertainty.  A distribution with more spread will cause more 

uncertainty at the same data density than a distribution with less spread.  Consider the three distributions 

shown in Figure 4.  Each has a mean of 1.0.  The coefficient of variation varies from 0.5 to 2.0.  Figure 5 

shows how the uncertainty is related to the reference distribution.  As the coefficient of variation 

increases, so does the uncertainty at a given data density.  There is a very direct relationship.  As the 

coefficient of variation doubles, so does the uncertainty.   

Variogram 

The continuity of the variogram affects uncertainty for a given data density.  As one would expect, more 

continuity in the variogram decreases uncertainty.  Three isotropic variograms with one structure and no 

nugget were considered.  The variogram range varied from 50 to 200m as shown in Figure 6.  Figure 7 

demonstrates the relationship between uncertainty and the variogram range.  As expected, the 

uncertainty decreases as the continuity increases.  At very low densities (wide spacings) the uncertainty is 

the same; most unsampled locations are not near data.  The uncertainty decreases rapidly for the more 

continuous variogram.  The decrease in uncertainty is not so rapid for the less continuous variogram.   

Number of Realizations 

The user must determine how many realizations to use for determining the various measures of 

uncertainty.  Increasing the number of realizations is computationally expensive.  The results are relatively 

insensitive to the number of realizations used as shown in Figure 8.  The bandwidth of uncertainty 

stabilizes with more realizations.  For instance, at low data densities the uncertainty using 500 realizations 

in Figure 8 is slightly more stable than the uncertainty using 100 realizations.  This is an expected result.  

More realizations will increase stability, but also increase computational expense; 50 realizations is 

recommended as a minimum.   

Scale 

Uncertainty depends on the size of the blocks into which the point estimates are averaged.  Larger block 

sizes will smooth out the highs and lows reducing the uncertainty.  This smoothing does not happen as 

much for smaller blocks.  Increasing the block size decreases the uncertainty thereby increasing the 

precision of the estimates.  For this comparison, point scale estimates were generated at 4m spacing 

which were then averaged into blocks of 4, 8, and 48m size (Figure 9).  Figure 10 demonstrates how 

increased block size decreases uncertainty increasing precision.  Precision is higher for the larger block 

sizes.   

Classification Threshold 

The probability of misclassification is highly dependent on the classification threshold.  Consider the cross 

plot of true and estimated values in Figure 11.  The blocks that have been classified as ore but are truly 

waste have been highlighted in red; the blocks that have been classified as waste but are truly ore have 

been highlighted in blue.  This has been done for three cutoffs: 0.25, 1.0, and 2.0.  The probability of 

misclassification is quite low for cutoffs of 0.25 and 2.0 and is higher for a cutoff of 1.0.  Figure 12a 

demonstrates the relationship between the probability of misclassification and the classification 

threshold.  Figure 12b compares this plot with the reference distribution used for this case.  The 

probability of misclassification is proportional to the frequency of the classification threshold in the 

reference distribution.  This is further illustrated in Figure 13 which shows the probability of Type I and 

Type II errors vs. data density for different cutoffs.  Again, the probability of misclassification is low for 

cutoffs of 0.25 and 2.0 and high for a cutoff of 1.0.  This is due to the increased frequency of the value 1.0 

in the reference distribution.   
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Monotonic Non-Parametric Curve Fitting 

The uncertainty measures calculated are not always monotonic increasing or decreasing as they should 

be.  For this reason, it is useful to fit a line of best fit to the results.  It was determined that a non-

parametric fit gives the best results.  In order to ensure that the results are either monotonically 

increasing or decreasing, a fitting is proposed.  The fitting is non-parametric.  This discussion will assume 

we are fitting a decreasing measure.  Increasing measures can be fit using the same method by making all 

the values of the dependent variable negative.  This makes the measure decreasing.   

 The monotonic non-parametric fitting (MNPF) proceeds as follows: 

1. Find the ‘bottom’ boundary starting with the first two points, search forward for a pair of points 

which are increasing, that is, where the second point in the pair is greater than the first.  Where 

this occurs, set the bottom value for the second point equal to the first.  Do this for all points.  

This process creates the red line shown in Figure 14b.   

2. Find the ‘top’ boundary starting with the last two points and working backward, following the 

same procedure given above to get the green line shown in Figure 14b.  Note that the top and 

bottom boundaries are equal between the first four points.   

3. Remove plateaus by searching forward again, this time looking for points where the top and 

bottom boundary are not the same.  The first time this occurs, set the new bottom boundary as 

75% of the way between the current bottom and top boundary.  If the top and bottom 

boundaries for the next point are also not equal, set the new bottom boundary for this point at 

25% of the distance between the current bottom and top.  This procedure creates the orange 

line shown in Figure 14c. 

4. Continue to remove plateaus by searching backward, again looking for points where the top and 

bottom boundaries are different.  When this is first encountered, set the new top at 25% of the 

distance between the current bottom and top.  At the next point, set the new top at 75% of the 

distance between the current bottom and top.  This procedure produces the blue line shown in 

Figure 14c.   

5. Repeat steps 3 and 4 until the top and bottom boundaries are equal at every point.  The end 

result is the black line shown in Figure 14d.   

This procedure produces a series of line segments which will always be decreasing.  This means that any 

uncertainty measures interpolated from the data will not inappropriately increase for increased data 

density.  The procedure described above has been implemented in the subroutine mnpf.   

 

Conclusion 

Data density is an important consideration for natural resource developers.  Practitioners are constantly 

faced with the question of how much data is enough.  It is useful to examine how various measures of 

uncertainty vary with data density in determining an appropriate data density.  No unified tool for 

determining uncertainty measures for various data densities was previously available.  A tool for 

calculating various measures of uncertainty at different data densities has been presented.  The 

uncertainty results are sensitive to a number of input parameters.  The response of the uncertainty 

measures to changes in the input parameters was demonstrated.  These examples have shown that the 

relationship between uncertainty and data density depends mainly on the variogram and histogram. 
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Figure 1:  Illustration of the geometric measures drillhole spacing, drillhole density, and distance to nearest drillhole. 

 
Figure 2:  Behaviours of the uncertainty measures with respect to data density: a) standard deviation; b) P90-P10; c) 

coefficient of variation; d) (P90-P10)/P50; d) probability to be in 15% of the truth; f) probability of misclassification. 

 
Figure 3:  Parameters for DATSPACSIM Program 

01   Parameters for DATSPACSIM 

02   ************************* 

03 START OF PARAMETERS: 

04 dataspacing.out   -uncertainty measures output 

05 dataspacing.fit    -mnp fitting output file 

06 red.dat    -file with reference distribution 

07 5    0    -  columns for vr and wt 

08        -1.0e21  1.0e21                  -  trimming limits 

09 0.0   5.0   -  zmin, zmax(tail extrapolation) 

10 1      0.0   -  lower tail option, parameter 

11 1      5.0   -  upper tail option, parameter 

12 4     4                           -point estimate spacing in x, y 

13 12  12                            -block size (multiple of point estimate spacing) 

14 21  21                            -# of samples in x, y 

15 3    -number of data spacings to consider 

16 5    5    -spacing in x, y (multiple of point estimate spacing) 

17 7    7    -spacing in x, y (multiple of point estimate spacing) 

18 10  10     -spacing in x, y (multiple of point estimate spacing) 

19 1     1.0    -vertical grid: nz, zsiz 

20 10     -number of reference models (per spacing) 

21 100                               -number of realizations per reference model 

22 15    -% sampling error st.dev. 

23 1    1.5    -critical threshold: option, value(eg. cutoff grade) 

24 15    -confidence interval to report (%) 

25 69069    -random number seed 

26 1     0.0   -nst, nugget effect 

27 1   1.0   0.0      0.0      0.0 -it,cc,ang1,ang2,ang3 

28            10.0    10.0    10.0 -a_hmax, a_hmin, a_vert 
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Figure 4:  Lognormal reference distributions with mean of 1.0 and standard deviation ranging from 0.5 to 2.0. 

 

 
Figure 5:  Uncertainty results vs. data density for the reference distributions shown in Figure 4. 

 

 
Figure 6:  Input isotropic variograms with one spherical structure, no nugget, and ranges varying from 50 to 200m. 

 

 
Figure 7:  Relative spread vs. data density for the variograms shown in Figure 6. 
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Figure 8:  Uncertainty results for different numbers of realizations. 

 

 
Figure 9:  Different block sizes used for upscaling the point estimates: 4m, 12m, and 48m. 

 

 
Figure 10:  Precision vs. data density for block sizes of 4, 12, and 48m. 

 

 
Figure 11:  Type I and Type II errors for cutoff values of 0.25, 1, and 2 respectively. 

 



Figure 12:  Relationship between misclassification error, cutoff, and the reference distribution.

Figure 13:  Probability of type I and type II errors vs. data density for different 

 

a.                                                                                             

        c.                                                                                        d.

Figure 14:  Illustration of the monotonic non

determination of the top and bottom boundaries;  c) plateau removal;  d) final fit.
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Relationship between misclassification error, cutoff, and the reference distribution.

 
Probability of type I and type II errors vs. data density for different cutoffs.

                                                                                            b. 

        
c.                                                                                        d. 

      
Illustration of the monotonic non-parametric fitting process:  a) points to be motonically fit

determination of the top and bottom boundaries;  c) plateau removal;  d) final fit. 

, CCG Annual Report 11, 2009 (© 2009) 

 
Relationship between misclassification error, cutoff, and the reference distribution. 
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