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A Hybrid Approach to Model Selection for Support Vector Classi-

fication for Categorical Data 
 

Enrique Gallardo and Oy Leuangthong 

 

The support vector machine – SVM algorithm is a Learning Machine that has been successfully applied to 

the problem of estimating the value of categorical data (e.g. facies or rock types) at unsampled locations. 

Roughly speaking, the algorithm looks for a linear boundary that balances between separating the ob-

served facies with a maximum margin and to classify correctly all of them. The boundary calculated by this 

approach is expected to have a good generalization property and it is used to assign the facies at unsam-

pled locations.  The SVM algorithm implemented with a Gaussian radial basis function kernel requires 

determining an optimal combination of two parameters, the penalty C of the optimization problem and 

the γ of the kernel. Typically, these parameters are selected by cross-validation (e.g. LOO, K-fold) on the 

observed data. This paper proposes a hybrid technique in which the parameters are selected based on the 

average classification accuracy of the SVM algorithm over a set of geostatistical realizations for categori-

cal data.  Unlike conventional model selection approaches, where only the observed data is used through 

the cross-validation technique to obtain an estimated of the generalization accuracy, the proposed 

method interprets the set of geostatistical realizations as equally probable representations of the target 

true set to be classified. The realizations are used to obtain a new proxy of the generalization accuracy. 

Both conventional cross validation and this hybrid technique select the parameters of the SVM that leads 

to the maximum generalization accuracy estimate. A synthetic application shows that the hybrid approach 

to model selection produces comparable or better results than conventional cross validation in terms of 

generalization accuracy and robustness. These properties lead to more accurate and reliable prediction 

models. 

 

Introduction 

Support Vector Machines (SVM) has been successfully  applied to subsurface geological characterization 

(e.g. Kanevski et al., 2001; Wohlberg, Tartakovky and Guadagnini, 2006). The characterization of geologi-

cal sites is similar to solving the classification problem of assigning a single category (facies or rock types) 

to unsampled locations based on observed data. Implementing SVM requires the simultaneous selection 

of two parameters that define the SVM model and determine its performance: the penalty parameter C 

and the kernel parameter. The task of selecting these parameters is called model selection and it is the 

focus of this paper. A novel hybrid technique that makes use of geostatistical simulations to make model 

selection is proposed. The basic idea is interpreting a set of L geostatistical realizations as equally prob-

able representations of the target true set to be classified. This interpretation allows using the realizations 

to calculate L estimates of the generalization accuracy for each SVM model on a predefined grid-search of 

parameter values. The SVM model with the highest mean generalization accuracy estimate is selected. 
 

Model selection and generalization accuracy estimate 

Implementing SVM for classification problems (also known as Support Vector Classification – SVC) re-

quires the simultaneous selection of the penalty (C) and the kernel parameters. The parameter C appears 

in the mathematical formulation of the SVM algorithm, while the kernel parameter depends on the spe-

cific kernel selected. In practice, the linear, polynomial and the Gaussian radial basis function (Grbf) ker-

nels are extensively used. The latter, implemented in this research, has the form: 

( )2
( ') exp ' ; 0K γ γ= − − >u,u u u

 
where u and u’ represent any two different locations in the domain under study, and γ is the parameter 

that must be selected. A detailed description of SVM and/or kernels is not offered in this paper. The read-

er is referred to Vapnik (1998), Burges (1998) and Cristianini and Shawe-Taylor (2001). 

The pair of parameters (C, γ) defines the SVM model along with its performance, which is measured 

through the generalization accuracy. Precisely, the purpose of model selection is to find the optimal SVM 

model (or the optimal pair (C, γ)) with the highest generalization accuracy. In practice, it is impossible to 
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know the “true” generalization accuracy; in consequence, an estimated value is used to select the optimal 

SVM model. Clearly, a technique that produces good estimates of the generalization accuracy is a tech-

nique that makes good selection of the parameters C and γ.  

 

Hybrid SVM model selection using Geostatistical simulation 

If the category (facies or rock types) at every location in the domain under study were known, the best 

SVM model would be found by calculating the true generalization accuracy; of course, the model that 

correctly classified the larger number of locations would be optimal. 

This is not a real scenario; the true category at every unsampled location is unknown. However, geo-

statistical simulation algorithms can generate multiple realizations that populate with a single category 

the unsampled locations in the domain of interest. These realizations are equally probable and reproduce 

the sampled set and the spatial structure of the data. Since the realizations are reasonably valid descrip-

tions of the unknown truth, they can be used to calculate multiple estimates of the generalization accu-

racy for each SVM model. The SVM model with the highest mean estimated generalization accuracy is 

selected. Describing the algorithms for generating geostatistical simulated realization is beyond the scope 

of this paper, the interested reader in geostatistics and its simulation algorithms is referred to the books 

of Goovaerts (1997), Chiles and Delfiner (1999) and Deutsch (2002). 

The proposed technique is illustrated in figure 1. After selecting a searching space for the pair of pa-

rameters (C,γ), the procedure is: 

a) Train and test the SVM at each node of the space of parameters C and γ.  

b) Compare location-to-location the SVM response to each L simulated geostatistical realizations to 

calculate L estimates of the generalization accuracy. The simulated realizations must be previ-

ously generated using a technique suitable for the given set of data. 

c) Calculate the mean of the L generalization accuracy estimates. 

d) Generate a contour map or a surface of the mean generalization accuracy estimates. Select the 

SVM model (the pair (C,γ)) with the highest value.  

 

Leave-one-out (LOO) 

The classical cross-validation LOO method is applied in this paper for comparison purposes. The descrip-

tion of LOO along with a benchmark with others techniques for model selection can be found in Anguita, 

Boni, Ridella, Rivieccio and Sterpi (2005). 

 To illustrate the proposed methodology, a synthetic reference 2D data set of two facies was generat-

ed and 6 subsets of different sizes were sampled to be used as observed or training data. The proposed 

technique and LOO were analyzed. 

The synthetic reference data set was generated by unconditional Gaussian simulation using an isotrop-

ic spherical semivariogram model without nugget effect and a range of 200 m. The Gaussian field was 

transformed to a categorical variable of two facies, white and black, using a threshold of 0 normal units. 

The small scale variability in the resulting map was removed by applying twice a moving window cleaning 

procedure. The reference data (Figure 2) has a resolution of 100 m x 100 m spacing that spans an area of 

1km x 1km, so it contains 10000 nodes. 

Six samples of different sizes (25, 50, 75,100,125 and 150 locations) were randomly drawn from the 

reference map to be used as training sets; in each case, the remaining unsampled locations were used as 

test set. The location maps of the sampled data are shown in appendix A. 

To apply the proposed technique, for each set of sampled data 100 realizations were generated using 

the sequential indicator -SIS algorithm (Journel and Alabert, 1988; Alabert and Massonat, 1990; Deutsch 

and Journel, 1998). The noise in the geostatistical realizations was removed using the maximum a posteri-

ori selection technique (MAPS) (Deutsch, 1998). 

The searching space for the parameters C and γ is a 81x81 grid defined for the sequence of values C= 

{2
-2

, 2
-1.9

,…, 2
5.9

, 2
6
} and γ= {2

-2
, 2

-1.9
,…,2

5.9
, 2

6
}. For each pair (C, γ) in the grid, an estimation of the genera-

lization accuracy is calculated using the proposed technique and LOO. For each technique, the pair (C, γ) 

with the highest generalization accuracy estimate is used to classify all the unsampled locations in the test 

set. The classified locations allow calculating the generalization accuracy on the reference data (or “true” 

generalization accuracy). Additionally, for comparison purposes, the reference data was used to find the 
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SVC model with the best possible generalization accuracy estimate (which in this case is equal to the 

“true” generalization accuracy). 

The GSLIB (Deutsch and Journel, 1998) and LIBSVM (Chang and Lin, 2001) software were used to make 

the geostatistical and SVC tasks presented in this paper, respectively. 
 

Analysis of results 

The proposed technique and LOO were analyzed and compared on their ability to: (1) find the optimal 

pair (C, γ) that leads to the SVC model with the highest “true” generalization accuracy; and (2) generate a 

good estimate of that value. The results are summarized in Table 1 and Figures 3, 4, 5 and 6.  

The proposed hybrid technique out performed the LOO method in finding the optimal SVM model for 

almost all the sampled data sets (Figure 3). The new technique produces SVM models with better genera-

lization accuracy than LOO. It is worth noting that the generalization accuracy obtained using the hybrid 

technique has similar values to those obtained using the reference data set. Figure 4 illustrates the results 

for the set of 50 samples. The reference data set and the proposed hybrid technique generate a smooth 

surface of the generalization accuracy estimates that allow selecting a unique optimum pair (C, γ). In con-

trast, the LOO technique generates an irregular surface with multiples steps that avoids selecting a unique 

optimum pair. These behaviors are consistent to all the training sets as it is evident in the contour maps 

plotted in appendix A. 

Table 1. Model selection results and generalization accuracy estimates 

 
 

In terms of the ability to produce good estimates of the generalization accuracy, the hybrid technique 

provides values that are reasonably closer to the generalization accuracy calculated on the reference 

data. It is interesting to note that the hybrid technique never overestimated the “true” generalization 

accuracy value. Additionally, it allows calculating a range of values for the estimated generalization accu-

racy. The generalization accuracy estimates obtained by LOO tends to be too optimistic (Figure 6). More-

over, for small data sets ( < 100 data ) and the selected grid-search, LOO was unable to provide a unique 

optimal SVM model. Figure 4 shows that the surface map of the LOO generalization accuracy estimates is 

irregular and exhibits multiple areas with the same maximum value. Due to the difficulty in selecting a 

unique SVM model, Figure 6 shows the best and worst LOO generalization accuracy values calculated on 

the reference data. 

 

Conclusions 

A novel technique to make SVC model selection was introduced. The proposed hybrid technique inter-

prets L geostatistical simulated realizations as equally probable representations of the unknown reality to 

calculate L estimates of the generalization accuracy for each pair of SVC parameters on a preselected grid-

search. The pair that generates the SVC model with the highest mean generalization accuracy estimate is 

selected. A range of minimum and maximum values for this estimate can also be calculated. The study 

case shows that the hybrid technique produces good generalization accuracy estimates; in fact, the re-

sults were very close to the values obtained using the reference data.  Further, the hybrid technique out 

Number of 

samples

Reference 

(Test)

Estimated 

Hybrid (Mean)
Hybrid Estimated LOO Best LOO

25 76,9 69,58 76,63 76 76,82

50 80,05 77,97 79,99 80 77,67

75 87,27 80,36 85,43 85,33 85,82

100 87,39 82,58 86,95 84 82,52

125 86,77 82,98 86,57 87,2 84,64

150 90,3 85,42 89,32 90 88,56
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performed the classical LOO method in model selection and estimating the generalization accuracy. These 

results suggest that the hybrid technique is a good method for model selection. 
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Figure 1: Illustration of the proposed hybrid technique 

 

  
Figure 2: Synthetic reference data 

 

 
Figure 3: Model selection results. Lines illustrate the generalization accuracy calculated on the reference 

data set using the parameters determined by the different methods. 
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Figure 4: Detailed results for the set of 50 samples. Surfaces of the mean generalization accuracy esti-

mates (top line) and contour lines of the mean generalization accuracy estimates (bottom line). 

 
Figure 5: Results of proposed methodology. Black line shows the highest mean generalization accuracy 

estimates. Dashed lines show the maximun and minimun generalization accuracyestimates. Blue line 

shows the generalization accuracy calculated on the reference data. 

 
Figure 6:  Results of LOO method. Black line shows the highest generalization accuracy estimates. Blue 

and green lines shows the best and worst generalization accuracy calculated on the reference data. 
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APPENDIX A 
 

 
Figure A1. Location maps of the sampled locations (training sets) 
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Figure A2. Contour plots of the generalization accuracy for each sampled size and each model selec-

tion method. The first column shows the results obtained using the reference data, the second column 

the results obtained using the proposed technique and the third column the results using LOO cross-

validation. 
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