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Conditional Distribution Fitting of High Dimensional Stationary Data 
 

Miguel Cuba and Oy Leuangthong 

 

The second order stationary assumption implies the spatial variability defined by the variogram is constant 

along the domain. Simulated models have this characteristic by construction. On the other hand, real 

geologic domains have internal structures as a result of geologic processes that formed the mineral 

deposit. The spatial variability of highly variable regions within a domain is not accounted by the 

variogram model because it is an averaged representation of the spatial variability of the domain. In those 

regions the conditional distributions are often underestimated, that is, locally the simulated model is less 

variable than in reality. Even when such situation can be verified, the conventional simulation approach 

(SGS) cannot account for local variable patterns. The multi-gaussian assumption that is a requisite for 

simulating with SGS is very restrictive to local modifications.  The present document proposes an approach 

for standardizing the local variability of a domain in order to make the variogram model do not under 

estimate conditional distributions in the domain. This is done by moving the domain from its original 

dimensional space to a higher dimensional space. The conditional distributions are tested using the cross-

validation methodology. 

 

Introduction 

The variogram can be used as a tool for identifying the non-stationary features in the domain related to 

the intrinsic assumption of the SRF. Two scenarios remain from the variogram analysis: 1) the problematic 

locations are grouped in sub-regions, so that they can be considered for sub-domaining and 2) the 

problematic locations are in small groups dispersed throughout the domain such that sub-domaining 

cannot be performed. This document focuses on the latter scenario and proposes an alternative method 

to account for the influence of these data in the domain so that the local uncertainty calculated using 

estimation/simulation can be used for a detailed mine plan strategy. 

 Sequential Gaussian simulation (SGS) is recommended to be used for simulating the variable of 

interest in a domain due to its simplicity in the implementation and availability in many commercial 

mining software packages (e.g., Pangeos, Vulcan, MineSight, and Datamine, among others). The 

implementation of SGS is very similar to simple kriging; both use the same parameters such as the 

variogram model and search specifications. For implementation it is necessary to assume a multi-gaussian 

environment for SGS since all simulation is performed in Gaussian space. Although SGS generates multiple 

realizations of the attribute, it can be verified against an SK model since the local average from SGS, taken 

over many realizations, will tend to SK estimates. The problem with SGS and SK is that it assumes that the 

conditioning data is part of a SRF, that is, it assumes there are no outlier increments or the variogram 

model adequately defines both local and global uncertainty. For this reason and in these highly variable 

regions, SGS does not account for the local features of the domain and is not used for simulating 

medium/short term models. The goal of this reserach is to provide a methodology to prepare the dataset 

for performing SGS, so that it reproduces the non-stationary features required for mine planning. 

 In general, only high values are considered problematic because a more pessimistic estimation is 

preferred over an optimistic one. In some cases, outliers are the result of an erroneous characterization of 

the geology (e.g., presence of samples that belong to different geologic processes other than their tagged 

category). In Figure 1 a sketch of reality is compared to a tentative geologic interpretation; due to the 

scale of the interpretation some samples of the high metal grade region are classified as part of the low 

grade metal domain. Estimating such domains using kriging in a strict manner would smear the high grade 

value over a considerable region in the low grade domain. As a consequence, the geostatistical model of 

the low grade domain is neither realistic nor appropriate for proposing a detailed mine plan. In a more 

general context, the presence of sub-patterns in the domain makes the available dataset behave as a SRF 

with a spatial continuity cannot be adequately defined by one variogram model. 
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Figure 1: Impact of generalization of geology due to the scale of geologic interpretation; reality (left) is not 

fully characterized when models are built (right). 

 

In this document the influences of trends in the mean and in the variance are considered to be absent. 

However, non-stationarity in the domain occurs when the intrinsic hypothesis
1
 of the SRF is not satisfied. 

Because of this, the estimated model appears locally unrealistic. Internal structures of the domain are 

present as patterns in the dataset which are not necessarily removed by normal score transformation. 

The presence of such patterns in the domain makes the decision of stationarity less appropriate. 

Proper estimation of the conditional distribution is important for simulation. The farther the true value 

falls from the confidence limits, the more difficult it is for the simulation to pick a realization that 

reproduces the true value at such a location and globally reproduces the sub-patterns in the domain. 

Ideally, a mine plan is based on the analysis of the geologic region to be mined; the impact of the geologic 

characteristics in the variable of interest is an important input in the process of decision making in mine 

planning. 

 Depending on the variogram model fitted, the degree of accuracy of the conditional distributions 

changes. A good variogram model is one that accounts for the spatial variability of the major part of the 

domain. The remaining spatial variability that is not properly accounted for by the variogram model is 

under-estimated in some regions and over-estimated in others. In real situations, it is unrealistic to expect 

that any variogram can account for the geologic features of a domain like it may under theoretical 

conditions. The approach presented in this document aims to account for the variability of this minority of 

the domain, where the spatial variability is under-estimated by tuning the distances between the samples, 

so that the conditional distributions are consistent with the conditioning information. The distances are 

modified by adding an extra dimension to the dimensional space of the conditioning dataset. In this way, 

the influence of the variogram model on the estimated parameters of the conditional distributions is 

approximated until the parameters are consistent with the dataset within some confidence limits. The 

goodness of the conditional distributions is verified using cross validation and confidence limit 

parameters. 

 

Measure of Accuracy 

Cross validation is used as a technique to test the quality of the estimated parameters of the conditional 

distribution with respect to the true values (Armstrong & Jabin, 1981). In this document, it is assumed 

that if the verified conditional distributions using cross validation properly account for their corresponding 

true values the conditional distributions of the rest of the unsampled locations will also do the same. 

 For all the data locations, confidence limits are considered as a measure of whether the true 

value with respect to its estimated conditional distribution is predicted within some tolerance intervals or 

not (see Figure 2). If the true value falls outside the confidence limits, then the proposed variogram model 

is considered to be inadequate and this location is flagged for pre-processing. All the conditional 

                                                           
1
 The expected value of the variable of interest exists ������� = 
, and the variance of the increments is 

assumed not to be a function of the position vector �, but of �, ������� − ��� + ��� = 2���� (Journel 

& Huijbregts, 1978). 
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distributions where true values are within the confidence limits are assumed to be consistent with the 

surrounding information. Theoretically, if 90% probability interval is chosen then 10% of the dataset is 

expected to fall outside the confidence limits. For this, one basic condition is the dataset is truly part of a 

SRF realization, recall that a real dataset is non-stationary. Contrary to the theoretical conditions, the 

proposed approach forces all the data point values to fall within the confidence interval in order to ensure 

the realizations reproduce the sub-patterns in the domain. 

 
Figure 2: Sketch of cross validation, the true value (black dot) falls outside of the confidence limits of the 

conditional distribution (gray lines) calculated using the rest of the information and the proposed 

variogram model. 

 

The accuracy of the estimates is measured by standardizing to one the distance from the estimated mean 

to any of the confidence limit values, therefore, if the true value falls outside the confidence limits the 

standardized distance is greater than one, and the conditional distribution is considered as improperly 

accounting for the data. Assuming the global univariate distribution of the domain is standard normal, 

then for the data values that are outside the confidence limits of the standard normal distribution, the 

standardized accuracy is re-scaled making the true values be the new confidence limits. This is done to 

ensure that for all values in the dataset there is a conditional distribution that includes the true values 

within reasonable confidence limits. 

 

Dimensional Conditional Distribution Fitting 

The variogram model γ��� is a function of the separation vector � that fully defines the spatial continuity 

of a SRF. The kriging estimated parameters of the conditional distribution at the unsampled location are 

functions of this variogram model. The variogram model is used to calculate the linear dependence 

between data values and the unsampled location in the kriging system. The smaller the distance from the 

conditioning data to the unsampled location, the smaller the conditional variance. Regardless of the 

values of the conditioning data the surrounding spatial configuration of the unsampled location is what 

really matters for calculating the conditional variance. The estimated mean tends to be similar in value to 

the closer surrounding data values. 

 Since the spatial covariance ���� is a function of the separation vector � the estimated 

parameters of the conditional distribution can be manipulated by modifying the separation distances 

from the unsampled location to the conditioning data. The influence of the conditioning data for 

estimating the parameters of the conditional distribution at the unsampled location decreases 

proportionally as the unsampled location is separated further from the data. The unsampled location 

becomes gradually more uncertain until the parameters of the conditional distribution are equal to the 

global distribution parameters, which occur when the influence of the conditioning data is negligible. 

When there are no samples within the effective range of the variogram model the estimated mean will 

equal the global mean ���
∗ ≅ 
 and the estimated variance will equal global variance ���

� ≅ �� this is the 

state of local maximum uncertainty. 
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 A small example is shown in Figure 3 to illustrate the sensitivity of the conditional distribution 

with respect to the position of the unsampled location. Consider a four samples dataset ~��0,1� and a 

location to estimate in 1D (see Figure 3-bottom). When the unsampled location is separated gradually 

from its original position by adding a new dimension the conditional distribution changes as the influence 

of the conditioning data diminishes (see Figure 3-top right). The change is gradual until the conditional 

distribution equals to the global distribution of the dataset, in this case ~��0,1�. For the example 

presented a nested exponential model is used (see Figure 3 top left, equation (1)). In Figure 3-top right 

notice the SK mean reaches 0 for the effective variogram range and the SK variance to the sill value of 1.0 

for the effective range. Both parameters approach the global values asymptotically because an 

exponential model is used. 

 ( ) ( ) ( )1.5 3.0
0.25 0.75Exp Expγ = +h h h   (1) 

 
Figure 3: Nested exponential variogram model (top left), sensitivity of SK variance and SK mean to the 

inclusion of additional dimension to the original position of the unsampled location (top right) and a 

sketch of spatial configuration of conditioning data (black dots) and locations of the unsampled location 

(empty dots) to different lengths of the additional dimension (bottom). 

 

The condition that the separation distances  !"!# between the unsampled location 

�′ = %&′', &′� , … , &′) ,  *′+, and the conditioning data �- = .&'- , &�- , … , &)- , 0/ do not decrease is 

guaranteed by the additional dimension *′+  ∀  *′+ ≠ 0. This additional Cartesian component *′+  at the 

unsampled location is always equal or greater than zero, so it is additive when the separation distance is 

calculated,  ′!2"!# = 3∑ 5&6- − &′67�)
68' + �*′+��9

'/�
 therefore  ′!-"!# ≥  !"!#. 

The SK variance is said that it cannot be used as a measure of local variability or accuracy since it is based 

on a variogram model which is a global approximation of the spatial continuity (Journel, 1986) or because 

SK variances are independent of the data values and only provide a comparison of an alternative data 

configuration (Deutsch & Journel, 1998). The uncertainty assessment of SK fully relies on the assumption 

that the conditioning data is a realization of a SRF, with two requisites: (1) the distribution of errors is 

gaussian, and (2) the variance of errors can be predicted (Isaaks & Srivastava, 1989). Let us consider 1000 

data points of an unconditional simulation where each cross validation conditional distribution is 

evaluated using confidence limits with respect to the corresponding true values for different probability 

confidence intervals. The proportions of samples within the confidence limits are similar to the theoretical 

expected proportions since the dataset is a realization of a multi-gaussian SRF (see Figure 4). Under 

correct conditions the SK conditional distributions account for local uncertainty properly. These two 
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conditions are (1) the variogram is known and (2) the conditional error distribution is calculated with no 

additional influence of any source of error, (Chilés & Delfiner, 1999). This is not the case of geologic 

processes where there is no true variogram. In fact, in practice the variogram fitting is based on the 

experience of the person in charge and on the objective of the study (Goovaerts, 1997). 

 
Figure 4: Proportions of true values within the confidence intervals (empty dots) compared to the 

theoretical proportions (black dots) of their respective cross validation conditional distributions. The true 

values are from an unconditional realization. 

 

Under the assumption of multi-gaussianity the conditional distributions estimated by SK are univariate 

Gaussian ~�����
∗ , ���

� �. All values are plausible outcomes to occur depending on their probability, even 

when they are very extreme values. Let us consider a value at a certain location has a probability of 

1 × 10"'=== to occur in a conditional distribution calculated using cross validation. Statistically the true 

value is a valid outcome of the conditional distribution. For a mineral deposit model used for economic 

decision, such an estimate could have serious consequences if it is considered as a valid result. For the 

small case presented the true value is smaller than the SK mean and when a realization is drawn at such 

location due to its very small probability the true value is very unlikely to be simulated. If the true value is 

unknown there is no way to verify the validity of the estimated conditional distribution. However, 

problems arise when the true value is known and its cross-validation conditional distribution does not 

account for it properly. Then when the surrounding locations are estimated, even though the SK means 

tend to average the big difference in values of the conditioning data, the conditional variances still remain 

smaller because the variogram model does not account for the true value properly. 

 The proposed approach tunes the conditional distributions to the conditioning data within some 

confidence limits under the assumption the conditioning dataset is representative of the domain. Using 

cross validation, once the conditional distributions account properly for their respective true values the 

resulting models is assumed to account for local and global uncertainty properly. Since the local 

conditional distributions are tuned to the dataset using additional dimensions the new spatial 

configuration of the conditioning information is called proper stationary state of the dataset. Some 

geologic features present in the dataset that were not captured by the variogram model initially are now 

explained by the additional dimensions. The additional geological information is added to the dataset in 

the form of position vectors. 

 

Cost and Benefit of the Conditional Distribution Fitting 

As mentioned before, the main goal of this reserach is to make the conditional distributions account 

properly for the local uncertainty of the realizations. Modeling conditional distributions is considered an 

ambitious goal and sometimes unrealistic to achieve without a specified theoretical model (Chilés & 

Delfiner, 1999). By adding extra dimensions there are many possible solutions to this problem. Many 

different configurations could give different degrees of fitting of the conditional distributions with respect 

to their true values. There would be some negative impact on the accuracy of the surrounding data 

locations of the fixed data location. This problem can be solved considering additional restrictions in the 
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algorithm such as reducing the negative impact on the accuracy of the rest of the samples, reducing the 

negative impact on the SK means or by trying to use a small number of additional dimensions, etc. 

 Using small probability intervals could be very restrictive for this approach. The smaller the 

probability interval the more extra dimensions are necessary to fit the conditional distributions. By 

making all the data values fall within the confidence limits the sense of probability loses meaning because 

it does not comply with the theoretical conditions. Theoretically for a 95% confidence interval 5% of the 

true values is expected to fall outside their respective conditional distributions (see Figure 4), while the 

approach tries to eliminate such proportion of data values. Setting up the confidence interval is a 

subjective part of this approach. In mining a 95% probability is commonly used (Journel & Huijbregts, 

1978). A real example of a Chilean copper mine (Chuquicamata) is presented in (Journel & Huijbregts, 

1978) where 96% of the observed errors of mean block grades fall within the 95% interval. On other types 

of deposits such as skarn type where the grade variability is high and more geologic structures are present 

such result would be very difficult to obtain because of the complexity of the geologic environment. When 

the distribution of errors is non-gaussian but continuous and unimodal a confidence interval of ±3���
�  

which correspond to 99.73% probability interval is preferable, see discussion in (Chilés & Delfiner, 1999). 

The distribution of errors is assumed gaussian for this approach. 

 There is a set of widely used variogram models which are present in many mining commercial 

packages, such as spherical, exponential, gaussian, etc. which are licit models considering dimensional 

spaces up to ℝA. In mining it is very unlikely to deal with data in higher dimensions than ℝA. By adding 

extra dimensions to the conditioning dataset it is highly probable the dimensional space increases to ℝ) 

with B > 3 and therefore some of the variogram models valid in  ℝA would end up not being licit models 

in such higher dimensions. The problem of using a non licit model is the possibility of get negative 

conditional variances. The conditional variance is a linear combination of the covariances ����∗��=�� =
∑ ∑ DEDF�5�E − �F7 ≥ 0)

F8=
)
E8=  and must be non negative (Goovaerts, 1997). To ensure this the 

covariance must be positive semi-definite and/or the variogram negative semi-definite (Goovaerts, 1997). 

The number of dimensions of the space is important for choosing a variogram model, a positive definite 

covariance function in ℝG is also positive definite in ℝ) if 
 ≥ B, however it is not necessarily valid for 


 < B (Chilés & Delfiner, 1999). Two examples are presented in (Armstrong & Jabin, 1981) where it is 

shown that a variogram model would lead to negative conditional variances. The set of covariance models 

that can be used for the proposed approach are reduced to the ones that are positive-definite in any 

dimensions. There is a variety of variogram models that are proved are licit in any dimensions, some of 

them are: 

• Spherical models based on a sphere of ℝ). The spherical variogram model without any 

specification of the dimension B is commonly referred to as the spherical model in ℝA, also there 

are other well known covariance models such as spherical in  ℝ� is known as the circular model, 

and in  ℝ' the triangle model (Chilés & Delfiner, 1999). 

• Exponential models are positive definite in ℝ). Also Radon transforms of the exponential 

covariance provide differentiable covariances that are also valid in (Chilés & Delfiner, 1999). 

• Gaussian model with a scale parameter greater than zero (Chilés & Delfiner, 1999). 

• Generalized Cauchi model (Chilés & Delfiner, 1999). 

• K-Bessel model (Chilés & Delfiner, 1999). 

• Logarithmic or de Wijsian model (Chilés & Delfiner, 1999). 

• Stable model. The exponential and gaussian models belong to this family (Chilés & Delfiner, 

1999). 

• Matérn model (Rasmussen & Williams, 2008). 

 

Algorithm for Conditional Distribution Fitting 

The only additional parameter different from conventional practice is the definition of a confidence 

interval. However, the intrinsic hypothesis is not assumed in this approach even when a variogram model 

is proposed. The variogram model has to account for the spatial continuity of the major part of the 

domain, not an average as in conventional practice. The part of the dataset which spatial variability is 

under-estimated by the variogram model is corrected by the conditional distribution fitting so that the 
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variogram model accounts for the entire domain in the fitted higher dimension. However, the region 

where the spatial variability is over-estimated still remains the same. This is equivalent to a pessimistic 

fitting of the variogram model that makes the conditional distributions be properly accounted but 

overestimated. And a consequence is the geostatistical model is more uncertain than it should be. 

The proposed algorithm can be considered as a prototype of a non-conventional geostatistical modeling 

which is aimed for the requirements of mining industry. Many different additional strategies of fitting the 

conditional distributions can be added according to other requirements in the model, such as maximizing 

the accuracies or maximizing the fitting of the conditional means, etc. The algorithm is presented as a 

workflow and each of the steps are discussed: 

1) Cross validation and verification of the input parameters. The goodness of the reproduction of 

the conditional distributions is verified when compared to their respective true values. The data 

locations where the true values fall outside the confidence limit parameters are marked for 

conditional distribution fitting. If the variogram model is fitted in a pessimistic manner a very 

small amount of the conditional distributions will require to be fitted; conversely, when the 

variogram model is fitted in an optimistic manner a very large amount of conditional 

distributions will require fitting. This is why it is important for the variogram model to account for 

the spatial continuity of the major part of the domain, so that, only an optimal number of 

locations require fitting. Also, the selection of the confidence interval influences in the 

proportion of samples to be fitted, it has to account fairly for the data values of the conditioning 

data. 

2) Verification of spatial relationship among the marked samples. It would the case a group of the 

marked samples are part of secondary populations. The verification is based on a cross validation 

analysis using only the marked samples. The mutual samples that estimate the parameters of 

conditional distributions that account for the true values within the given confidence intervals 

are grouped. Finally for each group of samples and independent samples different dimensions 

are assigned. It can be interpreted as each identified pattern is assigned to a particular 

dimension. This is the number of required dimensions. 

3) Tuning the extra dimensions. The distances on each the additional dimensions are calibrated 

until the conditional distributions at the marked locations account properly for their respective 

true values. The calibration process is: 

a. The samples at the marked locations are separated and the linear dependences 

between them are calculated using cross-validation. Samples that are mutually 

dependent are grouped and the number of groups becomes the number of extra 

dimensions to solve the dataset. Each group of samples shares only one extra 

dimension. This is done for simplicity, otherwise the problem might become intractable 

to solve. 

b. Small lengths are added to each respective extra dimension at the marked locations. 

Using cross-validation it is verified if the conditional distribution accounts for the true 

value within the confidence limits. The same dimension length is added to the non-

marked locations where the accuracy of the prediction was affected negatively. 

c. Got to step b and repeat until all the marked locations account for the true values within 

the specified confidence limits. 

d. Once the marked locations account for the true values the state of the extra dimensions 

is saved as a solution of the problem. It is worth to mention that there is a negative 

impact in the some of the surrounding conditional distributions that are minimized in 

step b. 

4) Save Results. Store the conditioning dataset including the information of the additional fitted 

dimensions as the new conditioning dataset. 

The goal in the use of extra dimensions is to find sub stationary sub-regions in the domain that are 

suitable for modeling using conventional techniques. Each sub-region is assigned to a particular extra 

dimension so that the behavior of the conditioning data on each dimension is more stable in terms of 

increments, |J��� − J�� + ��|, in the original dimensional space (see Figure 5). These sub-regions vanish 

in the high dimensional space and the whole dataset is considered as stationary and any conventional 
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technique can be used for modeling uncertainty both in local and global terms. In the proposed algorithm 

step 3-a calculates the number of extra dimensions required for solving the problem according to the 

confidence interval parameters. 

 
Figure 5: Sketch of classification of sub-domains by using extra dimensions 

 

Case Study 

Consider the borehole Ddh-81 dataset in normal score units and the cleaned variogram model (4.9) for 

99.7% probability as input information for building a geostatistical model. The confidence interval 

probability parameter chosen for this example is 95%.  

 The algorithm solves the dataset using three additional dimensions at twenty data point 

locations. From the three additional extra dimensions the first one consists of eleven data locations, the 

second one of five data locations and the third one of four data locations. The presence of outlier data 

points in the variogram cleaning may show that some data pairs are not accounted for by the variogram 

model (4.9) due to their large increments in the data pairs. The same locations are also identified in this 

approach. The initial accuracy of the conditional distributions using the conventional approach show some 

locations which true values fall outside their confidence limits (see Figure 6-top left). Even when the 

algorithm approaches the conditional distributions to the accuracy targets, there might be some locations 

that cannot solved completely. However, they will tend to be close to the fitting conditions and are 

accepted as solutions using small tolerances in the approximation. That is not the case in this example, 

the accuracy of all the locations are solved successfully (see Figure 6-top right). The improvement in the 

calculation of the conditional distributions is evident, however the accuracy of a small proportion of 

locations is slightly negatively affected at very few locations but they are still within the fitting target 

limits (see Figure 6-bottom). 

 
Figure 6: Initial status of the accuracy of the conditional distributions calculated using the conventional 

approach (top left), conditional distribution fitting (top –right) and comparison of them (initial - fitted) 

(bottom) 

 

The fitting of the conditional distributions have an inevitable impact in the estimation of the SK means. 

For the locations where the conditional distributions are fitted there are negligible improvements in the 

prediction of the SK means. Because, what the approach does is to make them locally more uncertain. 

However, the influence of fitted data values (outliers) on the surrounding data locations is reduced. This 
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makes the surrounding samples to be influenced mostly by the non-outlier data values when their 

conditional distributions are calculated. The improvement of the SK means can be seen when the 

conventional approach is compared to the conditional distribution fitting approach (see Figure 7). The 

correlation coefficients of the SK means compared to their true values show a small improvement, that is, 

0.8253 for the conventional approach and 0.8671 for the proposed approach. Graphically the SK means of 

the proposed approach (right side) show a better local fitting than in the conventional case (see Figure 7-

left side). 

 

 
Figure 7: Cross validation SK means calculated using conventional approach (top –left), conditional 

distributions fitting (top right), and scatter plots of cross validation SK mean versus true values using 

conventional approach (bottom left), conditional distributions fitting (bottom right) 

 

As well as the SK means the conditional variances are also affected. At the fitted locations the conditional 

variances tend to increase until the true values fit within the confidence limits of the conditional 

distribution. The conditional variances can be considered as data dependent in the original dimensional 

space, since the tuning of the conditional distribution is based on the occurrence of the true values within 

their respective conditional distributions. While they still remain stationary and configuration dependent 

in the fitted higher dimensional space. 

 The number of additional dimensions and locations that require conditional distribution fitting 

tend to decrease as the confidence limits of the conditional distributions increases, that is because fitting 

to larger probability intervals is less demanding for the proposed algorithm. For the probability intervals 

of 97% and 99% the number of required dimension are three and two respectively and the outlier sample 

locations fifteen and twelve.  

 

Discussion 

The extra dimensions capture the information of patterns in the domain that are unaccounted for by the 

proposed variogram model. Patterns in the domain are present due to the different geologic processes 

that deposit the concentrations of metal grades or any other element of interest in the domain. Modeling 

the domain without taking into account such patterns may result in a non-realistic representation of the 

domain. Consider the same domain as in Figure 5 which consists of three stationary sub-domains A, B and 

C (see Figure 8-top). The resulting domain becomes non-stationary even when the local mean and 

KL6MNO = 0.8671 KTU)V = 0.8253 
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variance are assumed to be constant. This can be seen in a cross section of the values of the domain. 

Notice that in Figure 8-bottom, for calculating the conditional distributions in the regions of sub-domain A 

the SK weights of the data points of the sub-domains B and C should be less relevant than of the sub-

domain A. In the proposed approach, the degree of relevance in the estimation of the conditional 

distributions at any location of the domain is tuned by the extra dimensions. When estimating at any 

location of the sub-domain A the samples of sub-domain B and C become less relevant because the extra 

dimensions tend to move the samples from domain B and C away the domain A or in another words make 

other sub-domains samples much more different. The effect of the additional dimensions for fitting the 

conditional distributions along the domain can be considered as an enhanced form of anisotropy since the 

directions of preferential continuity are defined more precisely and are shaped by the existing data, that 

is, data dependent. 

 In this proposed approach, cross validation is used in the process of fitting the conditional 

distributions. For each data location the best condition to analyze the estimation of the parameters of its 

conditional distribution is by using as much information as possible, because for modeling the unsampled 

locations in the domain the entire dataset used. The larger is the dataset the better is the understanding 

of the domain is. Other testing techniques such as jackknife are not considered because the analysis has 

to be done locally, that is, sample by sample. Jackknife tends to be more global and that is not the 

purpose of this approach. 

 The over-estimation of the spatial variability in some regions of the domain cannot be identified 

by using the variogram alone. The solution of these sub-regions would require the reduction of the 

distances between the existing data locations and perhaps the definition of a new more continuous 

variogram model. There is no easy way to find out the conditions when the conditional distributions have 

to be narrowed. Finally, for identifying the conditional distributions which are over-estimated the analysis 

has to be made in groups of data locations rather than individual samples. 

 In this document the high-dimensional configuration of the conditional dataset is assumed to 

behave more stationary in the sense that the conditional distributions calculated via cross-validation 

account properly for the true data. This condition is extrapolated to the rest of the domain, that is, the 

estimated conditional distributions of the domain at the unsampled locations in the same dimensional 

space also accounts for reality as the conditional data does, both local and global. 

 
Figure 8: Sketch of combination o two stationary domains A and B into C that mimic a geologic process 

(top), section of the resulting non-stationary domain C which shows the patterns in data values (bottom) 
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