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Sequential Gaussian Simulation of High Dimensional Stationary Data 
 

Miguel Cuba and Oy Leuangthong 

 

Realizations simulated using sequential Gaussian simulation SGS do not account for local features of the 

domain. In the case of SGS the variogram model characterizes the spatial continuity of the domain on 

average. If the simulated model is intended to be used for planning in relatively small periods of time e.g. 

for medium or short term mine plans, it should characterize the local features of the domain.  This 

proposes a methodology for accounting for local features in a domain via SGS. It is shown how to use a 

high dimensional conditioning data which has been prepared to behave stationary for simulating a 

domain. The methodology consists of simulating the domain in a high dimensional space under stationary 

conditions and after that project the results to the original dimensional space of the domain. The results 

show that local anisotropic features of the domain are reproduced without compromising any condition of 

the multi-gaussian assumption. 

 

Introduction 
The influence in the experimental variogram of highly variable sub-regions in the domain can be identified 

and removed (Cuba & Leuangthong, Experimental variogram cleaning, 2009). The resulting cleaned 

experimental variogram is fitted to get a variogram model and this represents the spatial continuity of the 

rest of the domain without the influence of the highly variable sub-regions. Therefore, the variability of 

the highly variable sub-regions is not accounted for by the cleaned variogram model. Consequently, this 

variogram may tend to be more continuous in presence of highly variable sub-regions. The conditional 

distributions of the data locations in these sub-regions are not properly represented by the conventional 

variogram model, and even less so by the cleaned variogram model.  

 In (Cuba & Leuangthong, Conditional distribution fitting, 2009) it is proposed a methodology to 

fix the conditional distributions at these locations by separating them from the rest of the conditioning 

data, and then adding extra dimensions to the initial Euclidean space in order to inject more uncertainty 

to the conditional distributions. The resulting spatial configuration is a high dimensional version of the 

initial conditional data or alternative conditioning data (ACD), that behaves more stationary than in the 

initial space or of the original conditioning data (OCD) in that the conditional distributions properly 

account for local uncertainty.  

 In this document, this new, high dimensional dataset is used to simulate geostatistical 

realizations of the domain. Transferring the highly dimensional information to the domain and an 

alternative representation of anisotropy that does not rely on the conventional elliptic pattern are 

discussed. After getting a high dimensional state of the conditioning dataset and transferring that 

information to the domain, virtually any conventional approach can be applied to reproduce the non-

stationary features related to the intrinsic assumption of the RF. 

 

Proposed spatial analysis and approximation of additional dimensions 

To show and compare the proposed approach, a real dataset is used. Specifically, the Jura dataset 

(Goovaerts, 1997) consists of 100 data points placed over a fairly regular grid configuration (see Figure 1). 

This particular data configuration helps to get a better experimental variogram without using large 

tolerances and also to highlight the differences between the conventional and the proposed dimensional 

modeling approaches. The element analyzed is Cobalt (Co). The data values are transformed to normal 

scores for sequential Gaussian simulation and it is assumed there is no presence of trends in either the 

mean or the variance. 
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Figure 1: Configuration of the Jura dataset of Co variable in normal score units 

 

The direction of major continuity is calculated at 45 degrees azimuth based on contour lines plotted from 

a variogram map (see Figure 2). The proposed variogram model consists of two anisotropic structures, 

both can be fit as exponential structures (see Figure 3). The first structure is isotropic with range equal to 

0.6 distance units and the second one is anisotropic with the major axis equal to 5.0 units and minor axis 

is equal to 0.6 units (1). 

 
Figure 2: Variogram map of NS Co 
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Figure 3: Variogram model (solid lines) and experimental variograms (black dots) of major (left) and 

minor direction (right) 

The experimental variogram of the OCD is cleaned using a 99% probability cut-off. For the 2D case, both 

the control limit and the variogram model are surfaces. The control limit splits the cloud variogram in two 

parts. The first part contains the valid increments of the experimental variogram and the second part the 

outlier increments. The latter represents the impact of the variability of the high variable sub-regions in 
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the domain. The cleaned experimental variogram is calculated using the valid increments in order to 

eliminate the influence of the highly variable sub-regions if they exist (see Figure 4). 

  

Figure 4: Cloud variogram split in two parts by a control limit at 99% probability, valid increments (left) 

and outlier increments (right) 

In presence of highly variable regions in the domain some significant changes in the cloud variogram may 

result. Those changes might lead to differences in the main anisotropic orientations, the use of different 

variogram model for fitting the cleaned experimental variogram and larger ranges of the new variogram 

model.  For this dataset, the differences in the experimental variogram values are too minor to support 

the use of a different variogram model (see Figure 5) or a different anisotropic configuration (see Figure 

6). 

  
Figure 5: Variogram model (solid lines) and Experimental variograms (black dots) of major (left) and 

minor direction (right) after experimental variogram cleaning at 99% probability cut-off (black dots) and 

original experimental variogram points (empty gray dots) 

 

Figure 6: Variogram map after cleaning increment outliers at 99% probability 

The locations of the data grouped in the outlier data pairs are plotted in Figure 7. The size of the black 

dots in the map represents the proportions of the number of times each sample location participates in 

the outlier increments, the data locations with large occurrences can be considered as problematic 

locations during modeling because they make large increments occur in the experimental variogram. This 

information can be used to identify sub-patterns in the domain that may cause problems when modeling 
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the variable of interest. The sample locations with small occurrences are not considered as indicators of 

potential sub-domains. In Figure 7 there is a group of problematic data locations on the west side that 

may be separated into a sub-domain, however, the frequency of those locations are relatively small 

compared to the two more problematic locations in the east and south-east region. For the present case 

study no sub-domaining is considered. 

 
Figure 7: Occurrences of data locations that make outlier data pairs for a cut-off probability of 99% 

Transferring ACD high-dimensional information into the domain 

In order to be able to use the ACD in estimation/simulation, the domain of the geologic deposit has to be 

in the same dimensional space as the ACD. The process of moving the domain from ℝ� to ℝ�, ∀ � > 	 

has to be bijective. This is important for two reasons: 1) after estimating and/or simulating in ℝ� the 

model of the domain is analysed and studied in the OCD space, that is, ℝ�; and 2) there has to be a 

unique correspondence between ℝ� and ℝ� because the OCD has to be exactly reproduced in the 

domain. The latter means the ACD projected in ℝ� has to be the OCD and no other in order to ensure the 

exact reproduction of the conditioning data in the domain. 

 The process of moving the domain from ℝ� to ℝ� consist of moving the nodes that represent 

the domain, each node has to have the same dimensions as the ACD. However, the values of the extra 

dimensions at the node locations are unknown and the process of transferring the extra dimension of the 

ACD can be subject to many interpretations. The extra dimensions can be seen as summarizing extra 

physical information about the domain and would be more convenient if they are modeled as such. This 

results in an additional estimation/simulation problem to get the extra dimensions at the nodes of the 

domain. 

 When modeling a mineral deposit, an outlier increment is the result of an abrupt change in the 

metal grade values of the data pair that is uncommon in the rest of the domain. If the problematic 

locations cannot be separated into another sub-domain, the outlier increments may occur because of the 

presence of a minor geologic structure within the domain, such as veins or faults that are difficult to 

separate into sub-domains because of their small scale (see Figure 8). For example, in a Cu skarn deposit, 

such an abrupt transition might be due to the presence of a boundary between chalcopyrite (CuFeS�) and 

bornite (Cu�FeS�) minerals. When the deposit is separated in domains, both are classified as exoskarn. 

 
Figure 8: Sketch of a sub-structure (right) identified using outlier increments present in a large domain 

(left), samples with extra dimension (black dots) show the presence of an anomaly in Domain A when 

compared to the rest of the samples (empty dots) 
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Consider two data points with values in normal score units at locations �1 and �� that make an outlier 

data pair (see Figure 9 top left). The outlier data pair implies that for this particular increment the 

averaged variogram model ���� is not representative locally and the same is also assumed to be valid for 

the locations in between. The node locations of the domain have to be projected in the same higher 

dimensional space as the ACD prior to estimation/simulation. However, the only known locations in the 

high-dimensional space are the ones that correspond to the ACD (see Figure 9 bottom left). They are 

taken as reference for the transformation. 

 The technique proposed for transformation takes each of the extra dimensions of the ACD, one 

at a time, and consider them as additional variables to predict. That is, keeping the original dimensional 

space of the OCD make the dimensions the new variables to predict at the grid node locations. After all 

the dimensions are modeled in the domain as additional variables, it is assumed the domain is in the 

higher dimensional space. The transition of each extra dimension in the domain between sample 

locations in the original space can be modeled considering many different scenarios. For example, they 

can be modeled considering a linear transition, parabolic, convex, etc., also using geological 

interpretations of the extra dimension based on the fact they represent physical properties of the domain 

(see Figure 9 case1-4). Also, geostatistics can be used to model them. Therefore, the uncertainty 

associated to the extra dimensions can be introduced to the model. However, this might give unrealistic 

results because of the assumption of stationarity. The extra dimensions are the non-stationary part of the 

domain, and are only located in specific regions of the domain. Each extra dimension is not present 

throughout the domain because they would then become part of the random variability and can be 

captured by the nugget effect in the conventional experimental variogram.  

 Assigning predefined shapes of transitions may introduce bias due to the subjectivity of the 

decision. The most simplistic way to transfer the extra dimensions is the linear transition which in 2D and 

3D original spaces is triangulation (see Figure 9 top middle). The advantage of triangulation is simplicity in 

terms of parameters. This is suitable when knowledge of the physical characteristics of the extra 

dimensions in the domain is lacking. Many techniques are available for implementing triangulation such 

as Delaunay triangulation algorithm which can be used in 2D and 3D with no problems. However, it may 

still be necessary to define boundaries of influence for the triangulation algorithm, which control the 

influence of the extra dimensions in the domain. These boundaries can be generated using nearest 

neighbour techniques. 

 The previous approach only gives one scenario of the dimensions. However, modeling the 

uncertainty associated to the extra dimensions would also be required. The lack of knowledge of the 

physical properties may lead to an unsuitable modeling approach of the dimensions. As mentioned before 

conventional geostatistics is inappropriate for modeling the extra dimensions because the extra 

dimensions cannot be assumed as part of a SRF. Any modeling technique that accounts for physical 

parameters would be more appropriate. Finally, the decision between the simplistic and geologically more 

realistic approach involves a high price when the complexity of the domain is modeled. However, a 

mineral deposit is of such complexity and it becomes more important when locally consistent models are 

required. 

 
Figure 9: Sketches of cases of transferring extra dimension into grid nodes locations (empty dots), five transition 

cases are presented: linear (top middle), convex (top right), linear (bottom left), concave (bottom middle) and 

irregular (bottom right) 
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For the case study the extra dimensions are calculated considering a 95% probability confidence interval 

of the conditional distributions. One solution of the ACD dataset is found using five extra dimensions, and 

a triangulation technique using influence boundaries is considered for modeling the dimensions in the 

domain. The boundary is used to limit the influence of the extra dimensions (see Figure 10).  

 The new location vectors of the domain grid nodes are the combination of the initial location 

vectors and extra dimensions modeled in the five maps. Recall that the location vector of the ACD is the 

combination of the initial location vector and the extra dimensions. However, only one of the extra 

dimensions has a value greater than zero. In (Cuba & Leuangthong, Conditional distribution fitting, 2009) 

this condition was set up for simplicity. Since the new location vectors are the combination of the initial 

location vectors and the additional models of extra dimensions, the new location vectors of the nodes 

may end up having more than one extra dimensional component with values greater than zero. This is still 

valid and there is no problem associated to the consistency of the dimensional space. 

 
Figure 10: ACD extra dimensions transferred to domain node locations using a triangulation algorithm 

After estimating/simulating in the high dimensional space the results have to be returned to the initial 

space to analyze the results. To do this, the estimated/simulated nodes of the domain are projected into 

the initial space by simply making all the extra dimensions equal to zero. There are no two node locations 

in the higher dimensional space that, after the projection in the initial space, fall in the same position 

because the components of the initial dimension remain the same. No matter the combination of the 

extra dimensions, the initial components will remain the same and that guarantees the bijective feature 

of the dimensional transformation of the domain. Consider a surface in a Euclidean ℝ� space, where � 

and � axes correspond to east and north respectively and � to elevation. If the surface is sampled over a 

regular grid for projecting in a �� ℝ� plane, � simply becomes zero and there is no problem in the 

projection because there are no two similar combinations of � and � in ℝ�. If the projection is made over 

the plane �� or �� the projection will result in non-unique projections because there are similar values of 

� and � for the projected planes respectively. In the case of the domains in hyper-dimensional space the 

same logic is applied, as long as there is a unique vector of the initial space, the rest of the components 

will not make the projection problematic. 

 

Anisotropy in Original and Alternative Dimensional Spaces 

The Euclidean space is considered as an isotropic environment because the measure of the distances is 

not preferential in any direction. On the other hand, an anisotropic environment can be seen as a 

deformation of a Euclidean space in some particular directions. The distance between two points in this 

case becomes a function of these anisotropic directions. A simple form of anisotropy is the ellipsoidal 

pattern. In ℝ� the preferential directions are defined by the three axes of the ellipsoid. They are usually 

referred to as major, minor and vertical axes. This form of regular shape anisotropy is suitable to be used 
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in conventional geostatistics because of the assumption second order stationarity of the IRF  ���� =
��−��. Assuming an ellipsoidal anisotropic environment the separation vector � can be scaled by a 

square matrix  � (Isaaks & Srivastava, 1989): 

 a = ×h A h   (2) 

The form of the anisotropic scaling matrix for any number of dimensions is (3): 
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The diagonal elements of the anisotropy matrix are the scaling factors for each dimension of the 

separation vector �. The  !  factors in the anisotropy matrix � scale the elements of the separation vector 

� linearly, each anisotropic component of the separation vector �" is  ℎ"! =  !ℎ! . In the case of 

conventional estimation/simulation the problem is finding the scaling factors of the elements of the 

location vectors � that make the spatial continuity of the new scaled space be defined by the proposed 

variogram in its isotropic form for each of the nested structures. The anisotropic deformation of the 

distances is inversely proportional to the variogram anisotropic scheme. In the direction of major 

continuity the anisotropic distance has to be reduced in order to increase the covariance value and 

conversely in the direction of minor continuity. That is,   ! = 1/&!, where &!  is the length of the 

anisotropic variogram ellipsoid axis that corresponds to dimension '. 

 An anisotropic scheme defined in ℝ� does not affect the extra elements of a separation vector � 

in ℝ�, ∀ � > 	. The anisotropic matrix can be expanded to a higher dimension � by simply equalling the 

size of matrix � to the new total number of dimensions and adding one in the diagonal extra elements. 

That makes the new extra components remain the same  ℎ"! = 1ℎ!. 

 The anisotropic matrix � deforms the original space in the directions of the elements of the � vector. 

However, the anisotropic ellipsoid can also involve rotation in space. The vector � can be rotated by 

multiplying it by a rotation matrix  ( (4). The form of the rotation matrix for any number of dimensions 

is (5); it rotates the plane of dimensions ), * (Aguilera & Pérez-Aguila, 2004). Notice the rotation 

directions are based on the order of the dimensions ), *. That is, + is positive or counter-clockwise for 

plane ), * and negative or clockwise for plane *, ). The rotation matrix ( can be the resulting 

combination of different rotated planes. This is done by rotating vector � by each of the different planar 

rotation matrices. 

 r = ×h R h   (4) 
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The rotation matrix � rotates vector � according to the specific rotation angles. However, the system is 

meant to be rotated rather than the vector. For rotating the system the vector � is multiplied by the 

transpose of the rotation matrix (6). Finally, the spatial configuration of the anisotropic ellipsoid is 

integrated by multiplying the transpose of the rotation matrix ( and the anisotropic matrix � (7). Recall 

that (� affects the vector, whereas �(��,  affects the system. This is consistent with the anisotropic 

effect in the separation vector � in GsLib (Deutsch & Journel, 1998). There is no limit in the number of 

dimensions for accounting for anisotropy and it is easy to write programming code in the matrix form. 

 
T

s
= × = ×h S h R h   (6) 
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The following is a 2D example of accounting for anisotropy for a separation vector �: 
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Notice that after rotating and deforming the system the new elements of the separation vector are a 

function of the scaling factors that correspond to each dimension ℎ"- =  -.ℎ-cos+ + ℎ3sin+6 and  

ℎ"3 =  3.−ℎ-sin+ + ℎ3cos+6. 

In practice, because of the different geologic events that formed the mineral deposit, the ideal scenario of 

linear estimator is one which accounts for locally different and of irregular-shape anisotropic patterns. 

Performing conventional estimation/simulation in such a complex environment would be virtually 

intractable. Even when a mineralized region has been exposed to a folding event it does not necessarily 

mean the anisotropic distances must be measured along the fold in order to get a better estimate. In such 

a situation, some approaches may consider unfolding the dimensional space of the domain. However, this 

may suggests that the unfolded domain is fairly stationary for estimation/simulation.  A stationary 

environment in a high dimensional space when projected in the initial dimensional space can account for 

these irregular anisotropic patterns. The extra dimensions provide the necessary customized 

deformations in the initial dimensional space and at the same time the estimated conditional distributions 

account properly for both global and local uncertainty. Let us consider nine data point locations placed 

over a regular grid (see Figure 11). An isotropic pattern is compared to three anisotropy cases that are the 

result of adding one extra dimension to some of the nine sample point locations (see Figure 11). The 

values of the maps represent the distances measured from the center of the map to the rest of the 

locations. For the first case the distances are measured in the 2D plane directly.  The second case 

corresponds to the sampling of data #6 which requires an extra dimension of length 5 units (see Figure 

12-top right). For the third case, the previous configuration is kept and to sample data #1, we must assign 

an extra dimension of 2.5 units (see Figure 12-bottom left).  Finally, for the fourth case, the configuration 

of case 2 is kept and sampling data #7 requires an extra dimension of 1.75 (see Figure 12-bottom right). 

For the three anisotropic cases only one extra dimension is used to modify the initial 2D space and a 

triangulation scheme is used to transfer the influence of the extra dimensions in the domain. Notice, 

projecting from a 3D surface to a 2D plane is sufficient for getting irregular anisotropic patterns in 2D. 

Recall that the extra dimensions account for the variability that cannot be represented in the initial space. 

 

Figure 11: Initial configuration of nine data point locations in 2D for showing the effect of irregular shaped 

anisotropic patterns 
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Figure 12: Comparison of an isotropic pattern (top left) against three cases of irregular shape anisotropic 

patterns with one sample with an extra dimension (top right), two samples with extra dimension (bottom 

left) and three samples with extra dimension (bottom right) 

The irregular anisotropic patterns account for the locations in the domain where the local uncertainty is 

under-estimated. The irregular anisotropic patterns are more flexible than conventional regular ones. 

Even when they can vary locally there is still the problem related to the symmetry of the anisotropic 

pattern. Samples that are located in one side of the location to estimate have to have exactly the same 

influence as the samples on the opposite side. In the conventional approach the influence of the 

surrounding conditioning data cannot be customized even in presence of geologic information that 

supports such decision. The additional information that might support irregularities in the symmetric 

influence of conditioning data can be extra geologic information. Recall that considering the variable to 

model is a regionalized variable and that any additional information is disregarded from the modeling 

process unless a co-regionalization environment is considered. However, co-regionalization considers 

dependence between primary and secondary variables, the dependence of the variable of interest might 

not be direct with each of the secondary variables one-by-one but a relationship of the primary variable 

with a combination of the rest of the variables. In Figure 11-left, for estimating/simulating at location #5 

the conventional approach considers the spatial continuity is only a function of the variable of interest, 

whereas the domain usually has additional features that control the continuity variable of interest. 

 

Comparison between Conventional and Proposed Approach. 

The conventional approach shares the same anisotropic pattern all along the domain as a result of 

assuming second order stationarity. As a result, the model may be unrealistic because the estimates 

capture a global uncertainty, whereas the local features remain averaged. However, both the 

conventional and the proposed approach rely on the assumption of multi-gaussianity and reproduces 

features, such as variogram and global distribution (see Figure 13). For comparing the experimental 

variogram reproduction between the conventional and the dimensional approach, in the case of the latter 

only part of the domain share the same dimensional locations, that is, the regions where the extra 

dimensions are zero. Recall that the location vectors of the nodes affected by the extra dimensions (see 

Figure 10) are not the same as in the original space ��. Therefore, the experimental variograms 

calculated in the plane �� do not consider such node locations. From the total of 75625 nodes in the 

original dimensional space without considering any boundaries 58331 are not affected by the dimensional 

approach. The experimental variograms of the realizations in the dimensional approach (see Figure 13 

top-left) are supported by the 58331 node locations, whereas, the experimental variograms of the 
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conventional approach by 75625 nodes, this is one of the reasons why the experimental variograms 

reproduction of the dimensional approach looks more variable. In the case of the verification of the global 

distribution reproduction (see Figure 13 bottom) all the 75625 nodes are considered because this 

verification is not dimensional dependent. 

 

 
Figure 13: Experimental variogram and global distribution reproduction of 100 realizations for 

conventional approach (left side) and dimensional approach (right side) 

The simulated nodes in the dimensional approach because of the deformation of the initial space 

reproduce non-stationary features of the variogram when projected in the initial dimension (see Figure 

14-right). The conventional approach shows a constant anisotropic pattern along the domain (see Figure 

14-left). In both cases the standard normal distribution is reproduced. In the conventional approach the 

variogram is reproduced in the initial space, however, as mentioned initially the variogram is not fully 

representative of the domain in the initial space and there is no reason for this. The approach relies on 

the domain being stationary in a hyper space; in that space the variogram is reproduced and the 

anisotropic patterns are constant. 

 

Figure 14: First realization using conventional simulation (left) and dimensional proposed approach (right) 

After averaging many realizations the conditional estimated means for the dimensional approach also 

reproduce the non-stationary features as the realization maps and in the conventional approach the 

anisotropic pattern is constant (see Figure 15). Notice in the dimensional approach the data locations that 

were identified in the variogram analysis stage as problematic locations are not spread in the domain. The 
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problematic data locations are extreme values either positive or negative. They become problematic 

when the samples that surround them are so different that the increments cannot be accounted by the 

variogram model, therefore the conditional distribution is under-estimated. 

 

Figure 15: E-type map of 100 realizations in normal score units of conventional approach (left) and 

dimensional proposed approach (right) 

The difference of the conditional means between the conventional and the dimensional approach for this 

exercise shows there is a preferential trend to constrain the higher values rather than lower values (see 

Figure 16). There is no condition that makes the mean of the distributions is centered to zero or the 

distribution is unbiased. It is a function of the occurrence of the problematic locations. The map of the 

differences shows that most of the regions constrain the high values and only in one region the influence 

of a low value sample is limited (see Figure 15 left).  

 
Figure 16: Map (left) and distribution (right) of difference between conventional and dimensional means. 

The conditional variances are data configuration dependent; they are almost similar for regular 

configuration patterns of the conditioning data. In the example presented the conditioning data is placed 

fairly over a regular grid, the conditional variances are also in a regular pattern because of the data 

configuration. In the dimensional approach the conditional variances are larger around the problematic 

locations (see Figure 17)  

 
Figure 17: Local conditional variances map of 100 realizations in normal score units of conventional 

approach (left) and dimensional approach (right) 
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The proposed approach accounts one second order non-stationary property of the domain, more 

specifically, the intrinsic hypothesis. Only the regions in the domain where the conditional variability are 

underestimated are targeted by this approach, which leaves the regions where the variability is over 

estimated invariant. The reason for this is the extra dimensions where they exist make the data locations 

more dissimilar than they are in the conventional approach, therefore, increasing the degree of local 

uncertainty. For reducing the variability there should exist a combination extra dimensions that when 

they are added makes the separation distances closer than in the original dimensional space, that is not 

possible using real numbers, however, the use of complex number can be considered which will end up 

making the problem almost intractable to solve. Moreover, for identifying locations where the local 

uncertainty is under-estimated it is only necessary to evaluate each data location using cross-validation 

technique. Whereas, for estimating locations where the local variability is over estimated not one location 

but many have to be evaluated in order to verify the same condition happens in all of them. From an 

engineering perspective, the resulting model can be seen as a pessimistic model where the local 

variability is overestimated. 

 The non-stationary features are solved by using a stationary methodology. Recall that there is 

nothing special in the estimation/simulation technique. In the higher dimensional space the domain is 

assumed and solved as stationary, that is, using a variogram/covariance model and a global symmetric 

anisotropic pattern. The non-stationary features are highlighted only after the higher dimensional domain 

is projected onto the original dimensional space. It is worth to mention, the assumption of regionalized 

variable tries to diminish the impact of additional physical information. Consider in a mineral deposit two 

data locations are remarkably different because some other geological variable or variables have also 

suffered also an abrupt change compared to the rest of the domain. In the proposed dimensional 

approach the extra dimensions try to account that ‘reason’ of outlier variability in terms of dimensions. 

That is, two locations are highly variable in the original dimensional space but not as much as variable in 

the higher dimensional space, the abrupt change in their extra dimensions tries to explain the high 

variability in the original space. The use of extra dimensions is also another scenario to be modeled as the 

variable of interest is, there is uncertainty associated to the extra-dimensions. The proposed approach 

uses a simplistic approach when considers only one scenario of many. However, it is shown that the use of 

them helps to improve the prediction in terms of performance of the conditional distributions. 
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