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Modeling the Coregionalization of Multiscale Data  
 

S. N. Elogne and Oy Leuangthong 

 

An essential task in geostatistics is integrating various data sources to improve numerical models.  

Modeling the spatial dependence and codependence between attributes is an important issue in 

multivariate spatial data analysis.  Cokriging with large-scale secondary data is not often used because of 

the challenge of obtaining a valid model of coregionalization.  The difficulty in using the linear model of 

coregionalization lies with the different smoothness properties of the data sets. For instance, standard 

methods for cosimulation cannot incorporate one field with a spherical auto-covariance, the other with a 

Gaussian auto-covariance, and their cross-covariance with a Gaussian model. Our main goal in this paper 

is to derive a valid linear model of coregionalization from data collected at different scales for cokriging 

prediction and cosimulation. In addition, we discuss some conditions under which the positive 

semidefiniteness/definiteness properties of the proposed model of coregionalization are satisfied. Finally, 

the proposed model is applied to a cobalt and nitrate data sets. 

 

Introduction 

With the increasing interest in accurate simulation of reservoir properties, subsurface-characterization 

based on limited well and seismic data takes on greater importance in reservoir modeling. Reducing the 

uncertainty in reservoir prediction can be achieved by integrating additional information such as core and 

seismic data. One of the major challenges in spatial statistics is the modeling of the auto- and cross-

dependence structures by analyzing and integrating information collected from different sources and at 

different resolutions. The determination of the cross-spatial dependence between attributes with 

different measurement scales plays a significant role in data integration. The difference in volumes makes 

some classical geostatistical methods nontrivial as the correlation coefficient between the attributes 

cannot be computed in a scale-consistent manner. In general, we have hard data such as well logs and 

core plugs, and soft data such as larger-scale seismic data (Xu et al. 1992), (Tjolsen et al. 1995), (Doyen et 

al. 1996), (Doyen et al. 1997), (Frykman and Deutsch 1999), (Yao and Journel 2000).  

 In the practice of cosimulation it is usually assumed that two correlated random fields have 

identical structures. The most-used approach (Goovaerts 1997) characterizes the coregionalization matrix 

in the following way: 
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where ( )j
ϕ h , j=1, …, L are covariance models and where the matrices of coefficients are positive 

semidefinite (Journel and Huijbregts 1978). One reason why cokriging methods are not often considered 

in a multivariate geostatistical framework is because of the challenges associated with modeling the 

coregionalization (Myers 1982). This process is already difficult with data collected at the same scale and 

is made even more so when different resolutions are considered (Kupfersberger et al. 1998). This is 

because every aspect of the framework needs to be incorporated in a more robust approach without 

ignoring their difference in resolution. To our knowledge, the only technique that considers this kind of 

modeling is a Markov model approach that is based on screening hypotheses (Journel 1999). While the 

Markov model is a particular case of the LMC (1), it is given in such a way that the cross-covariance model 

( )1,2c h  is proportional to the secondary field covariance ( )2c h and does not need to be inferred. It 

follows that the covariance of the primary field also contains the secondary-field covariance since 

sufficient conditions must be imposed on both a cross-covariance model and its associated auto-

covariance model.  

 It is likely that the spatial structure of the attribute at the coarser scale will be smooth. It is also 

expected that the auto-covariance structure of the attribute at the finer scale will present more variability 

at small distance lags, and that the commonly-used linear model of coregionalization (1) will not be 

adequate for modeling the coregionalization matrix. This is because finding the same set of basic 
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covariance models will result in drastic approximations and subsequent errors and inaccuracies in the 

estimation. As Oliver (2003) pointed out: “While it may be unlikely for the auto-covariance of porosity to 

be much different structurally from the auto-covariance of permeability, it is certainly clear that the auto-

covariance of seismic impedance might be much different from the auto-covariance of porosity, simply 

because of the averaging inherent in the data acquisition and processing.” Furthermore, the experimental 

cross-covariance ( )1,2ĉ h  might display a different effective range from the experimental auto-covariance 

of the soft data ( )2ĉ h . This is partly due to the use of collocated data for computing ( )1,2ĉ h  as shown 

in the proposed example (see Section 4).   

 The aim of this paper is to demonstrate that conditions may be imposed on the cross-covariance 

structure separately from the auto-covariance models. The construction of a positive definite 

coregionalization model is considered in a way that allows independent fitting of the auto/cross- 

covariance from the data. Our technique is mainly based on the spectral representation (Fourier 

transform) of positive semidefinite covariance function. Although modeling the spatial co-variation 

between attributes is not straightforward, it is a relevant approach to direct sequential simulation for 

multiscale data integration (Soares 2001), (Leuangthong 2005). Figure 1 gives an schematic example of 

three different scales/shapes that occur in practice. 

 

 
Figure 1: Illustration of volume measures for different length-scales data and shapes that need to be 

analyzed and incorporated in a multivariate spatial co-variation. 

 

This paper is comprised of five sections. Section 1 defines the purpose of the paper. Section 2 describes 

related research that has been conducted, while Section 3 illustrates how to preserve the positive 

semidefiniteness property of the coregionalization matrix. Section 4 is devoted to real data application. 

Finally, Section 5 presents conclusions and suggests directions for further research. 

 

Background 

As previously done by other investigators, we use two scales v  and V  and consider one primary 

attribute ( )1Z vα  defined at a finer scale v  and one secondary soft data ( )2Z Vβ  defined at a larger 

scale V  (Xu et al. 1992), (Tjolsen et al. 1995), (Doyen et al. 1997), (Yao and Journel 2000). The random 

processes ( )1Z vα  and ( )2Z Vβ  are further assumed to be second-order stationary and observed at 

blocks 1, ,
n

v v…  and 1, ,
N

V V…  respectively with , 1.n N >  For modeling the coregionalization 

covariance structure, it is assumed that the data have been standardized (Cressie and Wikle 1998). This 

paper focuses exclusively on the problems of uniform volume blocks. Blocks at the supports v  and V will 

be denoted by vα  and Vβ , respectively. The center of the volume will be represented by 
vu  and 
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,
x y

v v and
z

v  will denote its length scales in the x , y  and z  directions, respectively. In classical 

geostatistics, one considers that 

 '

'

v v
v v α α

α α− = −u u  (2) 

in a way that auto-covariance models ( )1 ',c v vα α  and ( )2 ',c V Vβ β  of the processes ( )1Z vα  and 

( )2Z Vβ  are consistently defined. The associated cross-spatial dependence will be denoted by 

( )1,2 ,c v Vα β . Consider that ( )2Z Vβ  is defined through a second order stationary pseudo/point scale 

random field ( )Y s  with covariance function ( )yc h as  

( ) ( )1

2
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V
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α

−

=

= ∈∑ s , 

where 
V

N  is a discretization number. Let 
1y,zc denote the cross-covariance function between the 

random fields Y  and 1Z . Assume that the coregionalization matrix of the vector 1( , )Z Y  can be 

modeled through a linear model in the form 
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where the nested basic structures ( ) ( )1 , , Lϕ ϕh h…  are all differentiable covariance models at the 

origin. It follows that the covariance ( )2 ',c V Vβ β  can be written as  
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Similarly the cross covariance ( )1,2 ,c v Vα β  is obtained through 
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It is then likely that the resulting coregionalization matrix  

( ) ( )
( ) ( )

1 ' 1,2 '

1,2 ' 2 '

, ,

, ,

c v v c v V

c v V c V V

α α α β

α β β β

 
 
 
 

 

cannot be obtained by a linear model since ( )2 '
,c V Vβ β  and ( )1,2 '

,c v Vα β  may follow differentiable 

models due to the averaging given by (3) and  (4). This is aptly demonstrated by the auto-covariance of 

the seismic impedance (Oliver, 2003). With this in mind, there is a crucial need to derive conditions under 

which a coregionalization model can be positive semidefinite. 

 

The accepted Markov model for coregionalization defines the secondary variable on a much larger 

support than the primary variable (Journel 1999). The theory behind this assumes that  
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 ( ) ( ) ( ) ( ) ( )' ' '

1 2 2 2 2 1 2 2E | , E |    ,Z Z z Z z Z Z z = = = = ∀   u u u u u u u  (5) 

and ( ) ( )1,2 2c cρ=h h  and ( ) ( ) ( )2 2

1 2 (1 )
r

c c cρ ρ= + −h h h  for some covariance ( )r
c h where ρ  

denotes the correlation coefficient between the collocated secondary data. In addition to the fact that the 

Markov assumption (5) does not consider the positioning of the location u  for ( ) ( )1 1Z z=u u  with 

respect to the location 
'

u  for ( ) ( )' '

2 2Z z=u u , there are at least three drawbacks to the theory. First, 

the cross-covariance is not modeled from the data. Second, the theory calls for the use of collocated data 

despite the difference in scale. To further complicate matters, more than four observed locations can fall 

within one volume of the secondary variable and could lead to many different measurements of the 

correlation coefficient. In addition, an excessive number of data points are used to compute the Pearson’s 

product moment correlation coefficient (Shmaryan and Journel (1999). Finally, the modeling of the 

covariance of the primary variable must contain the prior model ( )2c h , which could both produce 

inexact calculations and be time-consuming for the practitioner. In this paper we argue that there is a 

need to obtain the cross-covariance model from the data in a consistent manner that considers the 

difference in scale. Our inference approach will take advantage of the usually abundant secondary data 

( ) ( )2 1 2, ,
N

z V z V⋯  to model the cross-spatial dependence.  

 

Proposed Methodology 

The framework considered in the paper uses the data sets in their original space to demonstrate that the 

collocated data sets have not been transformed into their normal score counterparts. Cross-covariance 

functions describe the linear relationship between spatial variables and are crucial for stochastic 

prediction and simulation. To integrate different data sources, one needs to consider the difference in 

resolution and define cross-covariance functions between all the attributes of interest without ignoring 

any relevant information.  

Cross covariance modeling 

 

The method of moments estimate of the cross-variogram  

( ) ( ) ( ){ } ( ) ( ){ }1,2 1 1 2 22 E v v v vZ Z Z Zγ  = − + − +
 

h u u h u u h  

is given  
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( ) ( ){ } ( ) ( ){ }
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1
2 v v v v

N

z z z z
N

γ = − + − +∑
h

h u u h u u h
h

 (6) 

where ( )1,2N h  represents the pairs of observations separated by lag h and ( )1,2N h  its cardinality. 

Because of major scale differences between attributes, geostatistical techniques for obtaining the 

experimental cross-spatial dependence may be inefficient for small distances presented in the finer scale.  

There is a difficulty in calculating the cross-variogram ɵ1,22γ  because the centers of blocks are not defined 

at exactly the same locations.  Consider the recorded data of the secondary attribute 

( ) ( )2 1 2, ,
N

z V z V⋯  and let ( ) ( )1 1 1, ,
n

z v z v⋯  be those of the primary attribute. Since v V< , we 

define a new set of observed secondary data ( ) ( )' '

2 1 2, ,
M

z v z v⋯  based on the locations of the primary 

data where 

 ( ) ( )'

2 2   if 
k k

z v z V v Vβ β= ⊂ . (7) 

Thus, the sample cross-variogram estimates can be obtained using the standard estimator  
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where ( )1,2N h  represents the pairs of observations separated by lag h and ( )1,2N h  its cardinality. 

The consistency of the approach comes from (i) using the same number of data for calculating the sample 

variogram estimates of the primary variable and (ii) the similarity between the sample variogram 

estimates obtained from the data set ( ) ( )' '

2 1 2, ,
M

z v z v⋯  and those from the data set 

( ) ( )2 1 2, ,
N

z V z V⋯ . This permits an acceptable cross-variogram estimate which will be analyzed to 

produce a valid model of coregionalization. 

 

Sufficient conditions to achieve positive semidefiniteness 

 

In this section we describe the sufficient conditions needed to ensure the positive definiteness of the 

matrix of coregionalization 
n m+Σ . The matrix is given by the following: 
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To ensure the nonnegativity of the variance of any combination ,T
n m

 of the form  

 ( ) ( ), 1 2

1 1

T
n m

n m i i n j j

i j

Z v Z Vλ λ +
= =

= +∑ ∑ , (10) 

for any , 1n m ≥ , any volumes 
1, , nv v⋯ and 

1, , mV V⋯ , and any coefficients 
1, , n mλ λ +⋯ , the matrix 

may then be written as:  

 
, ,

, ,

n n n m

n m

m n m m

+

 
=  
 

t

A B
Σ

B C
 (11) 

where ( ), 1
1 ,

,
n n i j

i j n
c v v

≤ ≤
 =  A , ( ), 1,2 1

1

,
n m j k j n

k m

c v V
≤ ≤
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 =  B , and ( ), 2
1 ,

,
m m k q

k q m
c V V

≤ ≤

 =  C . 

While the auto-covariance functions 
1c  and 

2c  of the attributes must be positive definite, the cross-

covariance function 
1,2

c  does not need to satisfy this property. The practice of modeling the 

coregionalization matrix through (1) uses this requirement by default. We can exploit the positive definite 

property of 
1,2

c  to derive sufficient conditions on the validity of the matrix 
n m+Σ  for any , 1n m ≥ .  

Where the following conditions are true: 

1. 
1,2

c  is positive semidefinite, 

2. 
1 0η >  and 

2 0η >  such that 
1 2 1η η >  and ( ) ( )1 1 1,2c cη−h h  and ( ) ( )2 2 1,2c cη−h h  are 

positive semidefinite, 

then the matrix 
n m+Σ  given in (9) is positive semidefinite. Indeed, for any vector ( )1, ,

n m n m
λ λ+ +=λ ⋯ , 

one has 
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where the latter comes from the positive semidefinite assumptions. This is because the coregionalization 

matrix can be written as  
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and with 
1

2

1

1

η

η

 
 
 

, becomes positive definite. Since the functions ( )1 1,2cη h  and ( )2 1,2cη h  are 

positive definite, investigating the positive semidefiniteness of the functions ( ) ( )1 1 1,2c cη−h h  and 

( ) ( )2 2 1,2c cη−h h  is relevant under the notion of the positive semidefiniteness ordering (Horn and 

Johnson 1985 p. 469). Bochner’s theorem (Christakos 1992, p. 64) can be exploited to ensure that 

( ) ( )1 1 1,2c cη−h h  and ( ) ( )2 2 1,2c cη−h h  are positive semidefinite functions as  

 ( ) ( ) ( ) ( )1,2, 2 0   for 1, 2
d

d i

k k k kg e c c d kη π η
− − •  = − ≥ ∀ = ∫

ω h
ω h h h ω

ℝ

. (13) 

If we restrict ourselves to isotropic covariance functions, Schoenberg (1938) arrived at  

 ( )
( )

( ) ( ) ( )
[ )

1 /2
/2

( 2)/2 1,2/2

0,

, 0  0
2

d
d

k k d k kd
g r J r c r c r dr

ω
ω η ω η ω

π

−

−

∞

 = − ≥ ∀ ≥ ∫  (14) 

where Jν denotes the Bessel function of first kind of order ν . The spectral density can be a useful tool in 

verifying valid covariance models (Christakos, 1984).  We have the following lemma. 

 

 

Lemma Assume a positive number 
kη  exists such that ( ), 0

k k
g η ≥ω  and ( ) ( )1,2k k

c cη−h h  is 

positive semidefinite. Then where 0 kη η≤ < , one has ( ), 0
k

g η ≥ω  and ( ) ( ), ,
k k k

g gη η≥ω ω  for 

any ω .  

 

Proof. By definition, we have  
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∫
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ω h
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ω

ℝ

ℝ ℝ

. 

This shows that ( ), 0
k

g η ≥ω  since ( ), 0
k k

g η ≥ω . The proof is completed by the fact that ( )1,2c h  is 

positive semidefinite.                                                                                 □                                                                                                                       

 

Algorithm for positive definiteness 

 

According to equation (11), the technique to ensure positive definiteness is 

 ( ), 0  for 1,2
k k

g kη ≥ =ω . (15) 

Let 
kS +⊂ ℝ  be defined as the set of numbers 0kη ≥  such that ( ), 0

k k
g η ≥ω , that is  

 ( ){ }0   such that  , 0
k k k k

S gη η= ≥ ≥ω . (16) 

 

Clearly, 
kS ≠ ∅  since 0 kS∈  for 1,2.k =  We formulate the positive definiteness property to find the 

subsets 
1S  and 

2S . 

 

To this end, and using the result given in Lemma 1, we propose an iterative procedure that focuses on 

each parameter 0kη >  as follows: 

 

Problem  Find 
[max] 0
k

η >  such that ( )[max], 0  for 1,2
k k

g kη ≥ =ω  where  

 ( )[max]

0
max

k

k k
S

η
η

>
= . (17) 

Then, for the positive definiteness property to be ensured,  

 
[max] [max]

1 2
1η η ≥ . (18) 

In case of the Markov model of coregionalization, if ( ),g ηω  denotes the spectral density of 

( ) ( )1 2c cη−h h , we ensure the validity of the model if  

 ( )[max] 2 [max]   and  , 0gη ρ η> ≥ω . (19) 

 

Spatial statistics may be used to demonstrate the necessary and sufficient conditions to make the 

following coregionalization matrix positive semidefinite:  

, ,

, ,

n n n m

n m

m n m m

+

 
=  
 

t

A B
Σ

B C
 

where ( ), 1
1 ,

,
n n i j

i j n
c v v

≤ ≤

 =  A , ( ), 1,2 1
1

,
n m j k j n

k m

c v V
≤ ≤
≤ ≤

 =  B  and ( ), 2
1 ,

,
m m k q

k q m
c V V

≤ ≤

 =  C . This 

concurs with Cressie (1993, p. 141), who noted that building valid, flexible models for auto- and cross-

covariance and fitting them to available data is a challenge that requires further research.  

Assume the following conditions: 

1. ( )1c h  is positive definite or 
,n n

A  is positive definite. 

2. ( )2c h  is positive definite or 
,m m

C  is positive definite. 
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Then a necessary and sufficient condition (Horn and Johnson 1985, p. 473) to ensure that the matrix 

n m+Σ is positive semidefinite may be obtained by ensuring that, for any 
n∈x ℝ  and

m∈y ℝ , the 

following inequality holds 

 ( ) ( ) ( )
2

, , ,

T T T

n n m m n m
≥x A x y C y x B y . (20) 

Finding mild conditions under which the inequality (20) is satisfied can be investigated using the spectral 

densities of the random fields.   

 

Generalizing the Markov model of coregionalization 

 

The Markov model of coregionalization as described in (5) is written as  

 
( ) ( )
( ) ( )

( ) ( )
2 2

1 1,2

2

1,2 2

1 0

1 0 0
r

c c
c c

c c

ρ ρ ρ

ρ

     −
= +     
    

h h
h h

h h
  (21) 

under the regression model 

( ) ( ) ( )1 2Z Z Rρ= +u u u  

where ( )2Z u  is independent of the process ( )R u . This model, then, requires that the auto-covariance 

model ( )1c h  be described by a precise linear of ( )2c h  and ( )r
c h . This is obviously too restrictive and 

may lead to unrealistic models of coregionalization if the observed range of the sample estimates of 

( )1c h  is close to that of ( )2c h  and if the correlation coefficient ρ is high. Our formulation of a valid 

model of coregionalization in the Markov model framework is 

 
( ) ( )
( ) ( )

( ) ( ) ( )1 1,2

2 1 2

1,2 2

1 0

1 0 0

c c
c c c

c c

η ρ
η

ρ

     
= + −        
    

h h
h h h

h h
 (22) 

where η  is such that  

 ( ) ( )2

1 21    and    is positive definitec cη ρ η> ≥ −h h .  (23) 

This significantly improves the Markov model in that ( )1c h  is not required to contain ( )2c h . The 

positive definiteness property can be observed by writing the coregionalization matrix as 

( ) ( )
( ) ( )

( ) ( ) ( )1 1,2

1,2 1 1,21

1,2 2

1 1 0

1 0 0

c c
c c c

c c

η
η

ρ −

     
 = + −       

    

h h
h h h

h h
. 

If 1 η ρ> ≥ , the result is a positive semidefinite matrix with 
1,2

c  and ( ) ( )1 1,2c cη−h h  being valid 

covariance functions. 

 

More generally, the linear model of coregionalization (1) writes  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 2 22 12 12

1 1 1

,        and 
L L L

k k k

k k k

k k k

c b c b c bϕ ϕ ϕ
= = =

= = =∑ ∑ ∑h h h h h h  

with the positive definiteness property  satisfies under: 

• (A1)    

1

2
11 22 12

k k k
b b b≥   for each 1k ≥  

• (A2)    11

k
b and 22

k
b  having the same sign for each 1k ≥  

The requirements (A1) and (A2) are too restrictive. Indeed, consider the following coregionalization model  
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( )
( ) ( )
( ) ( )

1 1,2

1,2 2

c c

c c

 
=  
 

h h
Μ h

h h
 

with  

 

( )

( )

( )

1

2

12

0.75 Exp 0.25 Gaus ,    
5 10

 0.4 Exp 0.6 Gaus    
5 10

0.025 Exp 0.7 Gaus
5 10

c

c

c

   
= +   

   

   
= +   

   

   
= +   

   

h h
h

h h
h

h h
h

 (24) 

The positive definiteness property of the matrix ( )Μ h  cannot be obtained through the LMC since  

0.25 0.7
0

0.7 0.6
< . 

Although the Markov model of coregionalization cannot be used since 12c  is not proportional to 2c , one 

can easily find real numbers satisfying 1 2 1η η >  such that ( ) ( )1 1 1,2c cη−h h  and ( ) ( )2 2 1,2c cη−h h  

are positive semidefinite functions. 

 

Numerical results 

 

In this section we consider (1) a theoretical example of a model of coregionalization with a relatively high 

correlation coefficient, and (2) real data and show applications of the technique. 

 

4.1 Theoretical example of valid model of coregionalization 

 

Consider the following example as plotted in Figure 2: 

 
1 2

1,2 2

( )  Sph ,   ( ) Gaus
5 5

( ) 0.75 ( )

c c

c c

   
= =   

   

=

h h
h h

h h

 (25) 

with a high correlation coefficient 0.75ρ =  between the attributes. The correlation length 5ξ =  is the 

same for all the auto/cross-covariance models and the exact values of ξ  are not important since they 

only lead to a rescaling of the distance. We also observe that covariance 
1( )c h  has a different degree of 

smoothness at the origin than 
2 ( )c h . Furthermore, it goes beyond the Markov model requirement which 

would express 
1( )c h  as  

( )1( )  0.5625Gaus 0.4375
5

rc c
 

= + 
 

h
h h  

for a specified covariance model ( )r
c h  (exponential, spherical, Gaussian etc.) and could lead to an 

arbitrarily modeling of 
1( )c h . 

Write that  
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( ) ( )
( ) ( )

1 1,2

1,2 2

0.75 1 0
Gaus Sph Gaus

0.75 1 0 05 5 5

c c

c c

η
η

           
= + −           

            

h h h h h

h h
. 

Thus our investigation of the positive definiteness is reduced to find a positive number η  such that  

2 =0.5625   and  Sphe Gaus   is positive semidefinite
5 5

η ρ η
   

> −   
   

h h
. 

To do so, we start the convergence of our algorithm with an arbitrary value of 
(0) 0.1η =  and gradually 

increase this value while ( )(0), 0g η ≥ω . The algorithm continues until a value of η  is obtained where 

0

d∈ω ℝ such that ( )0 , 0g η <ω . 

The plot of the spectral density of the function 
[max]Sphe Gaus

5 5
η

   
−   

   

h h
 is nonnegative for 

values of 
[max] 0.6η = . This indicates that the coregionalization model (25) is positive semidefinite. 

 
Figure 2: Theoretical example of a generalized Markov model of coregionalization given in (25) with a high 

correlation coefficient 0.75ρ = . 

 

Figure 3: Spectral density of Sphe Gaus
5 5

η
   

−   
   

h h
; (a) 0.58η =  and (b) 0.6η = . 
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Soil data application 

 

To illustrate applications of the proposed technique for ensuring the validity of a linear model of 

coregionalization across scales, we consider the well-known Jura data (Goovaerts, 1997) using the cobalt 

(Co) and nitrate (Ni) data sets as primary and secondary variables of sample size 100n = . Using classical 

geostatistical techniques, we simulate the nitrate attribute at the point scale using SGSIM (Deutsch and 

Journel, 1992) and obtain regularization at blocks support of size 
20.48 0.5m× . We use the resulting 

block scale nitrate datasets as secondary data in simple cokriging prediction for the cobalt data. The 

location maps of the data sets are shown in Figure 4 below. The omni-directional framework and the 

hypothesis of isotropy will be considered as the data sets do not indicate a preferential direction of 

variability.  

 
Figure 4: Location maps of the cobalt and nitrate data sets. 

 

 
Figure 5: Variography of the data sets and modeling. 
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Consider the following methodology to infer the coregionalization matrix. The auto- and cross-

semivariogram models of the standardized data sets are displayed in Figure 5. The covariance models are 

given by  

 

( ) ( )

( )

1 2

1,2

( ) 0.1 0.9 Exp ,   ( ) 0.00 Gaus
0.9 1.1

( ) 0.00 0.3392 Gaus
1.45

c c

c

δ δ

δ

   
= + = +   

   

 
= +  

 

h h
h h h h

h
h h

 (26) 

where Exp  and Gaus denote the exponential and Gaussian semivariogram models of range and sill 

equal to one and ( )δ h  represents the Kronecker delta function. The cross-spatial dependence is 

modeled through a positive definite Gaussian model with a longer range than those of the auto-

covariance models as given by (26). Hence the Markov model approach cannot be applied in this case. 

Consequently, the positive definiteness of the matrix  

, ,

, ,

n n n m

n m

m n m m

+

 
=  
 

t

A B
Σ

B C
 

as defined in Equation (11) will have less zeros in the matrix 
,n m

B  than in the square matrices 
,n n

A  and 

,m m
C . Ensuring the validity of the model, then, presents a challenge. As described in (12), positive 

numbers 
1η  and 

2η  satisfying 
1 2 1η η ≥  must be used such that the functions 

1 1 1,2
( ) ( )c cη−h h  and 

2 2 1,2
( ) ( )c cη−h h  satisfy the positive semidefinite requirement. An algorithm with the following starting 

point 
[ ]0 [0]

1 2 0.1η η= =  is then employed by gradually increasing the value of 
kη . The search stops when 

the first value of 
kη  is reached such that 

0

d∈ω ℝ where ( )0 , 0
k k

g η <ω . Ultimately, we obtain 

 
[max] [max]

1 2
0.68   and  1.695η η= = . (27) 

Since 
[max] [max]

1 2
1η η > , we conclude that the coregionalization model (26) is positive definite. Figure 6 

gives the plots of the spectral densities ( )[max]

0
,

k k
g ηω  for 1,2.k =  

 

Figure 6: Plot of the spectral density functions; (a) 
[max]

1 1 1,2( ) ( )c cη−h h  and (b)
[max]

2 2 1,2( ) ( )c cη−h h . 

 

We perform leave-one-out cross-validation using the proposed method where each observation is 

removed in turn and the remaining observations are used for prediction. The performance of the 

predictors is evaluated using the following statistical measures: mean error (ME), mean absolute error 

(MAE), root mean square error (RMSE), Pearson’s linear correlation coefficient (R) and the mean of the 

mean standardized squared deviation ratio (MSSDR). The criterions are computed as:   
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( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

1/2
2

1 1/2

1 1

2
1 1 2

1 1

 MAE= ,   RMSE=

ME= ,  MSSDR  

n n

i i i i

i i

n n

i i i i i

i i

n z z n z z

n z z n z zσ

− −

= =

− − −

= =

 
− − 

 

− = −

∑ ∑

∑ ∑

s s s s

s s s s s

ɵ ɵ

ɵ ɵ

 (28) 

where ( )i
z s is the observed data, ( )i

z sɵ  is the cokriged/kriged estimate in the cross-validation and 

( )2

i
σ s  is the cokriging/kriging variance. The results are reported in Table 1 and 2 and show 

improvement of the cross-validation statistics when using the valid model of coregionalization (26) for 

both data sets. The goodness measure of the fit MSSDR shows encouraging results for the primary 

data. 

Table 1: Statistics of the leave-one-out cross-validation performance through the simple cokriging/kriging 

prediction on the secondary data. 

 

Criterion ME MAE RMSE R MSSDR 

SK using 

2 ( )c h  
0.00 0.57 0.75 0.97 2.45 

SCK using 

(26) 
0.00 0.55 0.73 0.97 2.47 

 

Table 2: Statistics of the leave-one-out cross-validation performance through the simple cokriging/kriging 

prediction on the primary data. 

 

Criterion ME MAE RMSE R MSSDR 

SK using 

1( )c h  
0.01 2.53 3.11 0.46 0.98 

SCK using 

(26) 
-0.06 2.47 3.03 0.51 0.95 

 

As expected, there is not much improvement for the exhaustive secondary data. However, the estimates 

of the cobalt data are significantly improved with the leave-one-out cross-validation method producing 

the lowest MAE and RMSE and a higher correlation coefficient. In addition, Figure 7 demonstrates the 

prediction and variance maps obtained for the cobalt data. Although there is a lack of comparison with 

other relevant techniques, the overall pattern is promising.  

 

 
Figure 7: Simple cokriging prediction and the associated variance map of the primary data.  
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Conclusions 

 

In this work we propose a method for obtaining a valid model of coregionalization for attributes observed 

at different resolutions. The main goal of this paper is to avoid the somewhat drastic approximation 

produced by the Markov model of coregionalization upon integration of larger-scale secondary attributes. 

The methodology described herein generalizes the linear model of coregionalization classically used for 

modeling the auto- and cross-spatial dependence. The flexibility of this approach includes the ability to 

accurately model the co-dependence structures in a careful manner to satisfy the positive definiteness 

requirement. We apply simple cokriging using the proposed model of coregionalization, to the cobalt 

nitrate data without having to build any set of collocated data and then computed the associated 

correlation coefficient. Finally, with simple cokriging, we use leave-one-out cross-validation data to assess 

the quality of the results. 
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