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On the Smoothness Properties of the Large Scale Random Process 
 

S. N. Elogne and O. Leuangthong 

 

The geostatistics scaling results as described in (Kupfersberger et al, 1998) are essentially derived from the 

point scale process using a regularization operator (Journel and Huijbrets, 1978, p. 171) and hold under 

the assumption that the nested covariance models involved in the finer scale spatial structure remain the 

same as those involved in the larger scale covariance structure. Because in practice discrete versions of the 

regularization operator are considered, applications of these scaling theories must be conducted with care. 

The main objective of this paper is to provide scaling results that include the changes in the smoothness 

property the auto-covariance function of the large scale process. 

 

Introduction 

An essential task in reservoir characterization relies on integrating various data sources to improve 

reservoir simulation models (Efendiev et al, 2005). In geostatistics, one considers that observed data sets 

from well cores and log traces as coming from a fine scale process. Others observed data sets such as 

seismic impedance are considered as large scale information. Geostatistical applications often rely on 

point support observed data and large scale simulated realizations are investigated. Prior knowledge 

about the spatial dependence structure of a process at a modeling volume cell (usually greater than the 

scale of the collected data) can be of interest when integrating data from different data sources of 

different lengths scales (Kupfersberger et al, 1998) (Frykman and Deutsch, 1999). The key point is that the 

correct modeling of the large scale spatial structure are crucial for  integrating multiscale data using 

techniques such as cokriging (Xu et al, 1992), sequential Gaussian simulation with block kriging.   

 To our knowledge the geostatistics scaling laws (GSLs) as reviewed by (Kupfersberger et al, 1998) 

is the only approach to address that problem. The GSLs were derived in the early days of geostatistics and 

have been extensively used in modeling the core, log and seismic data (Frykman and Deutsch, 1999), 

(Frykman and Deutsch, 2002). The scaling laws are concerned with the changes to the spatial dependence 

structure, determined by nugget effect, the range and the sill.  

 Consider a second order stationary processes 
v

Z   defined on a scale v (not necessarily the point 

scale) and let 
v

C   be its auto-covariance function with finite variance 
2

v
σ . Moreover assume that 

v
Z  is 

isotropic and write that  

 ( ) ( )
0

L

v k k

k

C a rρ
=

=∑h  (1) 

where r = h ,  
2

0 v
a εσ=  is the nugget component, 

k
ρ  are positive definite correlation functions and 

k
a  are real numbers for 1, ,k L= … . The anisotropic case can be studied in a similar way by selecting 

preferential directions.  Let V be any scale usually large than the scale v  and let 
V

Z be the associated 

process with covariance structure
V

C . The scaling laws write the auto-covariance function 
V

C  as   

 ( ) ( )
0

,
L

V k k

k

C V V b rα α ρ
=

+ =∑h  (2) 

with 

 

( )
( )
( )

2

0 , 0 ,,       1    

,
   for   1, ,

,

v v V V v v V

k k

b a r r V

V V
b a k L

v v

εσ η η

ϕ

ϕ

= = = + −

= = …

 (3) 

where  ,v V

v

V
η =  and ( ),v vϕ  represents the average covariance given by 
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( ) ( )' '

2

1
, ,

v v

v v d d c
v

ϕ •= ∫ ∫u u u u  

Note that the ratio ,v V
η  appears only in the nugget 0b  and on the range 

V
r  and is independent of the sill 

k
b  of each nested correlation structure

k
ρ  for 1, ,k L= … . They are at least two major drawbacks on 

using the scaling results. 

(i) First, the theory behind the scaling starts from the point scale process ( )Z• u  using the regularization 

operator  

 ( ) ( ) ( ) ( )
1 1

   and   
v V

v V

Z v d Z Z V d Z
v V

α β

α β

α β

• •= =∫ ∫u u u u  (4) 

But in practice the above characterization (4) is never used as one relies on a discretized version of (4) 

using a specific number of discretized nodes from the finer scale to the larger scale. As a consequence the 

nugget effect and the range of the coarse scale process given in (3) do not hold since the exact volumes of 

the scales are never called. 

(ii) One also observes that the smoothness property of the auto-covariance function is preserved through 

the scaling process as the nested correlation functions 
k

ρ  remain unchanged from (1) to (2). Since the 

auto-covariance function plays an important role in any geostatistical modeling, this assumption should 

be reviewed as the averaging operator may lead to a change in the spatial structure.   

 The main goal of this paper is to show that the auto-covariance of the coarser scale process is 

differentiable in the mean square sense regardless of the initial smoothness property of the finer scale 

process because of the averaging inherent in the data. As a result if 
vC  is modeled through a linear 

combination of non differentiable nested structures (spherical, exponential, etc…) then 
V

C  will be 

modeled through differentiable structures (Gaussian, Cauchy, Matern etc...).  

 

Review 

Consider now a larger scale V such that any of its block Vα
 can be written as a partition of a finite set of 

elements 1, ,
, , V

vN
v vα α
… of the fine scale v  as 

,

1

V
vN

i

i

V vα α
=

=∪  where the V

v
N denotes the number of blocks of 

the finer scale that discretize any block of the larger scale.  Define the up-scaled process 
VZ  as   

 ( ) ( ),

1

1
.

V
vN

V v iV
iv

Z V Z v
N

α α
=

= ∑  (5) 

More generally for a deterministic, bounded and integrable function ( )vω  over any volume finite 

volume v  (the averaging kernel ( )vω  allows variable weight within a specific block), we generalize 

Equation (5) as  

 
( )

( )
( ) ( ), ,

1

,

1

1
V
v

V
v

N

V i v iN
i

i

i

Z V v Z v

v

α α α

α

ω

ω
=

=

 
=   

 
∑

∑

 (6) 

such that ( ),

1

0

V
vN

i

i

v αω
=

≠∑ .   Recall that 
V

Z  is well defined if and only if (Christakos 1992)  

 ( ) ( ) ( ) ( )
2

, , , ,

1 1

E  that is    ,

V V
v vN N

V i j v i j

i j

Z V v v C v vα α α α αω ω
= =

< ∞ < ∞   ∑∑  (7) 

for any Vα . If 
v

µ represents the stochastic mean of 
v

Z  over the domain of interest, then the 

regularization operator (6) yields 
V v

µ µ= , that is the stochastic mean is preserved.  
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Nugget effect  

Any block ,iv α at the scale will be classically represented by its center ,

v

i αu  and similarly any block Vα at 

the coarse scale V will be represented by its center 
V

αu . For any block ,iv α , the random variable 

( ),v i
Z v α  can decomposed (embedded) into a smooth correlated fluctuation 

v
X  and a zero random field  

noise 
v

ε  such that  

 ( ) ( ) ( ), , ,v i v v i v iZ v X v vα α αµ ε= + + . (8) 

The random field 
v

ε  represents non-resolved inherent variability, purely random additive noise or 

random measurement errors (Cressie 1993, Section 2.3) (Christakos 1992, Section 7.4).  For any , 'α α  

and blocks vα  and 'vα  it is assumed that 

 
( ) ( )( )

( ) ( )( ) ( ) ( )

'

' '

(A1) Cov , 0

(A2) Cov , , Var

v v

v v v

X v v

v v v v v

α α

α α α α α

ε

ε ε δ ε

=

=   

 

where the function ( )',v vα αδ  takes the value one if 'v vα α=  and zero otherwise. Using the 

regularization (5) and  using the assumptions (A1)  and (A2)  one gets 

 
( ) ( )

( )

2

' , , '

1 1

2

, , '

1 1

1
, ,

1
,

V V
v v

V V
v v

N N

V V

V v i jV
i jv

N N

v v

v i jV
i jv

C C v v
N

C
N

α α α α

α α

= =

= =

 
=  
 

 
=  
 

∑∑

∑∑

u u

u u

 (9) 

Obviously the random process 
V

Z  is not isotropic as ( )',V V

V
C α αu u  does not depend on the distance 

between 
V

αu  and '

V

αu . Calculating the variance of  
V

Z  is as  

 
( )( ) ( ) ( )

( )

2

, ,

1

2

2

, ,

1 1

1
Var Var

1 1
,

V
v

V V
v v

v

N

V v i v iV
iv

N N

v i jV V
i jv v

Z V X v v
N

C v v
N N

α α α

α α ε

ε

σ

=

= =

  
 = +        

 
= + 
 

∑

∑∑

 (10) 

It then follows from the equations (9) and (10) that the nugget effect of the coarse scale process 
V

Z  is as 

 2 21
V vV

vN
ε εσ σ=  (11) 

In others words the nugget effect from a finer scale v  to any coarser scale V  decreases proportionally to 

the inverse of 
V

v
N . This says that in case where the quantity 

V

v
N  is to be chosen, one can reduce the 

effect of 
2

Vεσ  by taking large values of 
V

v
N . This can only be possible if the finer scale is assumed to be 

the point scale. In any case, the nugget component does not vanish as it depends of both quantities 
2

vεσ  

and
V

v
N . Similarly by using the weighted linear average given in (6) we derive that  

 ( )

( )

2

,2 2

1

,

1

V
v

V
V v

v

N
i

N
i

k

k

v

v

α

ε ε

α

ω
σ σ

ω
=

=

 
 
 =
 
 
 

∑
∑

 (12) 

Since the non-uniform weight function ω  is assumed to take nonnegative values, we easily find that 
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( )
( )

2

1
j

k

j

v V k

v V

v

v
β

β

ω

ω⊂

⊂

 
 

< 
 
 

∑ ∑
 

and derive that 
2 2

V vε εσ σ< , that is the nugget component decreases. 

The main objective of this paper is to show that when 
V

v
N becomes increasingly large, the auto 

covariance function of the large scale is twice differentiable with respect to any direction.  

 

Mean square differentiability 

Recall that a second order stationary process ( )Z s  defined on a support 
dD ⊂ ℝ  with covariance 

function ( ), 'c s s  is said to be mean square differentiable with respect to any direction 
p
ε  (Christakos 

1992, p. 44) , (Abrahamsen 2003) if and only if 

 ( )2

2

, '

p

c

s

∂

∂

s s
 (13) 

exists and is finite at all diagonal '=s s  where ( )1, , , ,
p d

s s s=s … … . The mean square differentiability 

is  equivalent to  

 
( ),

0
p

c

s
=

∂ +
=

∂
h 0

s s h
 (14) 

(Christakos 1992, p. 62). Thus if Equation (14) holds, then the quantity ( )2

2

, '

p

c

s

∂

∂

s s
 exists and is finite. 

Consider the up-scaled process ( )VZ Vα  as defined in (5) with covariance function 

( ) ( )
2

' , , '

1 1

1
, ,

V V
v vN N

V V v v

V v i jV
i jv

C C
N

α α α α
= =

 
=  
 

∑∑u u u u . 

Using Equation (1) , one has 

 ( ) ( )
2

' , , '

1 1 1

1
, .

V V
v vN NL

V V v v

V k k i jV
k i jv

C a
N

α α α αρ
= = =

  
= −  

    
∑ ∑∑u u u u  (15) 

We have the following lemma. 

Lemma 1 Assume that the auto-covariance structure ( )vC h  of the fine scale process is differentiable at 

the right of zero, that is 

 ( )
1 0

L
k

k

k r

d r
a

dr

ρ

+
= =

< ∞∑  (16) 

Then the auto-covariance 
V

C  is twice differentiable with respect to any direction 
p
ε  at the diagonal 

'

V V

α α=u u . 

Proof 1 : Observe that the covariance ( ),V V

V
C α αu u  can be written as  
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( ) ( )

( ) ( )

( )

2

, ,

1 1 1

2 2

, , , ,

1 1 1

2

2

, ,

1

1
,

1 1

1 1

V V
v v

V
v

N NL
V V v v

V k k i jV
k i jv

NL L
v v v v

k k i i k k i jV V
k i k i jv v

L
v v

v k k i jV V
k i jv v

C a
N

a a
N N

a
N N

α α α α

α α α α

α α

ρ

ρ ρ

σ ρ

= = =

= = = ≠

= ≠

  
= −  

    

      
= − + −      

       

  
= + −  

  

∑ ∑∑

∑ ∑ ∑ ∑

∑ ∑

u u u u

u u u u

u u 


 (17) 

since by definition
2

1

L

k v

k

a σ
=

=∑ . Similarly one has 

 
( ) ( )

( ) ( )

2

, ,

1 1 1

2

, ,

1 1

1
,

1 1

V V
v vN NL

V V v v

V p k k i j pV
k i jv

L L
v v

k k k k i j pV V
k k i jv v

C r a r
N

a r a r
N N

α α α α

α α

ρ

ρ ρ

= = =

= = ≠

  
+ = − −  

    

  
= + − −   

   

∑ ∑∑

∑ ∑ ∑

u u ε u u ε

u u ε

 (18) 

since 1
p

=ε . Combining equations (17) and (18) yields 

( ) ( )
1 2

0

, ,
lim

V V V V

V p V

r

C r C

r

α α α α

→

+ −
= +

u u ε u u
I I  

where  

( ) ( ) ( )
( )

, , , ,

1 2 20 0
1 1

1
lim   and  lim

V
v

v v v v
NL L

k i j p k i jk

k kVr r V
k k i jv

v

rr
a a

rN r N

α α α αρ ρρ
→ →

= = ≠

 − − − −−   = =      
∑ ∑ ∑

u u ε u u

I I Since 

by assumption ( )' 0kρ  is finite for any k , we get ( )'

1

1

1
0

L

k kV
kv

a
N

ρ
=

= ∑I  and 
2

1
V

v
N

∝I . It follows that for 

large values of 
V

v
N , 1 2 0= =I I  for which completes the proof of the Lemma. 

Note that the assumption (16) is classical in practice as most of the covariance models (spherical, 

exponential, Gaussian etc…) fulfill this property.  

 The next result investigates the case of finite values of 
V

v
N  which occur when the finer scale has 

a relatively large volume. In such a case and based on the previous lemma, we may expect the covariance 

to be twice differentiable with respect to any direction. We have the following lemma. 

Lemma 2 Assume that  
V

v
N  is finite. In addition assume that the auto-covariance structure ( )vC h  of the 

fine scale process satisfy 

 
( )

1 0

0
L

k

k

k r

d r
a

dr

ρ

+
= =

=∑  (19) 

Then the auto-covariance 
V

C  is twice differentiable with respect to any direction at the diagonal 

'

V V

α α=u u  when 
V

v
N → ∞ . 

Proof 2 : Using the same technique as in the proof of Lemma 1, on has  

( ) ( )
1 2

0

, ,
lim

V V V V

V p V

r

C r C

r

α α α α

→

+ −
= +

u u ε u u
I I  

where ( ) ( ) ( )
( )

, , , ,

1 2 2
0 0

1 1

1
lim   and  lim

V
v

v v v v
NL L

k i j p k i jk

k kVr r V
k k i jv v

rr
a a

rN r N

α α α αρ ρρ
→ →

= = ≠

 − − − −−   = =      
∑ ∑ ∑

u u ε u u

I I  
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The proof follows from (19).                                                                                            □  

 

Numerical examples 

In this section, we evaluate the accuracy of the presented theories using simulated data. We consider a 

two-dimension example and simulate over a domain [ ] [ ] 20,  100 0,  100D = × ⊂ ℝ  a zero mean 

second order stationary Gaussian random field ( ){ },  Z D• ∈s s  with non differentiable covariance 

function at the origin given by 

 ( )( ) 0.3 0.7 Exp
12

c δ•

 
= +  

 

h
h h  (20) 

with range 12r• ≈ . 

Then we consider a scale of interest v with volume blocks [0,5] [0,5]×  where spatial analyses are 

requested. Then we define the up-scaled process 
v

Z  by  

 ( ) ( )
1

1
 

v
N

v iv
i

Z v Z v
N

α α

•

•
=•

= ∈∑ s  (21) 

where the discretization number 12 10 120v
N• = × = is freely chosen large for accuracy. The number of 

simulated blocks at the scale v  is clearly equal to 400n =  which is sufficient for consistent statistics. 

The resulting standardized covariance model ( )
v

c h  that fits the sample covariance at the scale v  is as 

 ( )( ) 0.0 1.0Gaus
18

vc δ
 

= +  
 

h
h h  (22) 

with range 20.75r• ≈ .   As proven in Lemma 1, the smoothness property of the covariance model of the 

large scale process defined in Equation (21)  is governed by ( )' 1

1 1

1 1
0 0.002

L L

k k kV V
k kv v

a
N N

ρ ξ −

= =

∝ ≈∑ ∑ . 

This explains the smoothness property of ( )
v

c h  as the nugget 0.0025
120

v

ξ
ξ •= =  is negligible. 

Discussions and Conclusion 

The geostatistics scaling laws are revisited and important notions such as the nugget effect component 

and the smoothness property of the underlying auto-covariance function are discussed. It is proved that 

when the number of discretization V

v
N  used to define the regularized process is large, the auto-covariance 

function of the coarse scale is at least twice differentiable.  The correct modeling of the spatial structure 

of the coarse scale process can be used in a multiscale data framework where the positive definiteness 

property of the coregionalization matrix can be obtained using the approach described by Elogne and 

Leuangthong (2009). 
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