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On the Selection of Secondary Variables for Cokriging and Cosimulation 
 

Miguel Cuba, Olena Babak and Oy Leuangthong 

 

Due to the complexity of fitting several direct and cross-semivariograms for cosimulation, usually only 

those secondary variables that are highly correlated to the primary variable are considered for 

geostatistical modeling. Additionally many geomodelers believe that poorly correlated variables will not 

provide relevant information to improve estimates.  This paper shows that even poorly correlated 

secondary variables can contribute significantly in the prediction of the primary variable.  One synthetic 

example is presented in this document; this consists of one primary variable and two secondary variables, 

with one highly correlated and the other poorly correlated to the primary variable. The estimation of the 

primary variable is carried out by simple kriging, simple co-kriging using both secondary variables, and 

each secondary variable independently. The contribution of the secondary variables are presented 

considering: 1) correlation coefficient of cross-validation, 2) mean squared error, 3) mean absolute error, 

and 4) the profile of the simple co-kriging weights of the poorly correlated variable.  Our results show that 

accounting for the poorly correlated secondary variable does improve inference of the primary variable. 

 

Introduction 

One of the most important problems in the geosciences is the problem of spatial prediction. Spatial 

predictions are often required for planning, risk assessment, and decision-making. Typical applications 

include determining the profitability of mining an orebody, producing a reservoir, management of soil 

resources, soil properties mapping, pest management, designing a network of environmental monitoring 

stations, etc. (Weisz et al, 1995; Gotway et al., 1996; Moyeed and Papritz, 2002). 

 Kriging (and its derivatives) is a well-known and established methodology for spatial prediction. 

Kriging uses the spatial correlations provided by the variogram to calculate the weights that are applied to 

the sample values surrounding an unsampled location. The weights obtained from the kriging minimize 

the estimation variance and account for the spatial correlation between the surrounding samples and the 

estimation location (that is, closeness to the estimation location) and between samples themselves (that 

is, data redundancy). Kriging is a statistically optimal interpolator in the sense that it provides the best 

linear unbiased estimate.   In the case of multivariate data, cokriging (CK) is commonly applied for 

estimation (Vauclin et al, 1983; Wackernagel 1994; Goovaerts, 1997; Wackernagel, 2003). Cokriging 

allows estimating the variable of interest with data of the same type and auxiliary variables in the 

neighborhood: 

 

 

 

As majority of resource characterization problems involve multiple variables, including multiple metals 

and/or minerals, petrophysical attributes such as porosity, permeability, water saturation, etc, the 

implementation of cokriging is very time consuming, as well as there might be potential problems of 

current software limitations to the number of variable being able to considered and in some cases 

invertability of covariance matrices can be questionable. 

 The aim of this paper is to investigate whether all of the secondary attributes contribute 

positively to the estimation and if there can be set a cut-off on the correlation coefficient between 

primary and multiple secondary data below which the advantage of using a particular secondary data is 

negligible. The paper is organized as follows. The motivation for using a correlation coefficient as a 

measure for usefulness of inclusion of particular variable into cokriging estimation equation is explained 

first by relating regression and (co-)kriging. Then a case study with one primary variable and two 

secondary variables related with different correlation coefficients to the primary is conducted. The 

advantage/disadvantage of using poorly correlated variables in estimation is measured in cross validation 

using a mean squared error and a correlation coefficient between truth and estimate. 
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Kriging and Regression 

Kriging is mathematically very closely related to regression analysis. Regression analysis is a set of 

methods and techniques for modeling and analyzing several variables with the aim of establishing a the 

relationship between a dependent (in other words, primary) variable and one or more independent (i.e., 

secondary) (Draper and Smith, 1998; Glantz and Slinker, 1990). As kriging, regression analysis derives a 

best linear unbiased estimator, makes assumptions on a covariance model, and is formulated using a very 

similar formulae (linear regression equation is given below): 

∑
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zero mean error. The coefficients β ’s are unknown and are calculated based on least squares method.  

 To measure the ‘goodness of global fit’ of the regression model to the data, a coefficient of 

determination R
2 

is used. This coefficient is often interpreted as the proportion of variability in the 

response variable that is explained by the model. In particular, a coefficient of determination of 1 

indicates that the fitted model explains all variability in the variable we are predicting, while  indicates 

that there is no 'linear' relationship between the response variable and regressors.  

 In the case of a linear regression with only 1 independent (secondary) variable, there exists an 

interesting connection in-between coefficient of determination R
2
 and a coefficient of correlation 

between response (primary) and independent (secondary) variables. Specifically, R
2
 is equal to the square 

of the correlation coefficient (Nagelkerke, 1991); implying the higher the correlation between primary and 

secondary variables, the better the fitted model. In particular, if the correlation is above 0.7 (in absolute 

value), the contribution of the secondary variable is very significant, since more than 50% of variability in 

primary variable will be explained by a regression model. Due to similarity in-between regression and 

kriging, it is believed that there exist a similar relationship for correlation coefficient of spatial primary and 

secondary variables and goodness of estimation (tested in cross validation). Exactly the existance and 

pattern of this relationship will examined next in a case study.  

 

Case Study 

In order to evaluate the impact of secondary variables, the following reference model is considered. One 

map for the primary variable P1 and two sets of nine maps for secondary variable S1 and S2 respectively, 

are simulated at a resolution of 100 by 100 pixels, with a relative dimension of each pixel of 100 by 100 

uod
2
 (uod are units of distance). The primary variable P1 map was simulated using a spherical 

semivariogram model with no nugget effect and range of 2000; (see Figure 1).  

 Based on the P1 map, the secondary variable S1 and S2 are simulated using full co-simulation 

with the same semivariogram model of P1. The two sets of nine simulated maps of S1 and S2 are 

simulated in such a way that their correlation coefficients to the primary are approximately in the range 

of 0.1 to 0.9 in intervals of 0.1 (see Table 1). The direct semivariogram is scaled by the corresponding 

correlation coefficient for fitting (see Figures 2-4). For a zero correlation coefficient only the primary 

variable is considered; this way the range of possible correlation coefficients for the two secondary 

variables is fairly covered. The maps of the simulated secondary data are shown in Figures 5-6. 

 

Table 1: Correlation coefficients of secondary variables S1 and S2 maps to primary P1 map. 

Map # Corr. Coeff. P1&S1 Corr. Coeff. P1&S2 

1 0.109 0.116 

2 0.205 0.209 

3 0.304 0.299 

4 0.414 0.404 

5 0.508 0.501 

6 0.606 0.602 

7 0.707 0.700 

8 0.814 0.804 

9 0.925 0.902 
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For evaluation of the impact of the secondary variables S1 and S2 on the estimation of primary variable P1 

two sub-datasets of 200 data points each are sampled both from the P1, S1 and S2 maps. The sampling is 

carried out in two ways: 1) from a regular grid 50% of the values are removed independently for P1, S1 

and S2 and 2) 200 samples are drawn from the P1 and S1 maps randomly. The patterns of the secondary 

datasets are kept the same for all the correlation coefficients of P1-S1 and P1-S2 respectively, see Figures 

7-8 for an example pattern of primary and secondary data locations. 

 The impact of S1 and S2 in the estimation of P1 is calculated using cross-validation. For each 

correlation coefficient pairing between P and S1 and between P and S2 the following steps are performed: 

(1) Randomly sample from the reference models of all three variables, (2) Perform cross validation of P 

using kriging of only primary data – this is the base line for comparison, (3) Perform cross validation of P 

using full cokriging using primary data and S1 and S2 data, (4) Calculate and compare the correlation 

coefficient between estimate and the truth and the mean absolute error (MAE) from cross validation in 

steps 2 and 3, (5) Repeat steps 1 through 4 many times (say 100) to remove impact of any particular 

sample set.  The same methodology is applied to both gridded and non-gridded samples. 
 

Results and Conclusions 

Figures 10-11 show the cross validation correlation coefficient of P1 as a function of correlation 

coefficient in-between P1 and P2 for two pre-selected values of correlation in between primary and 

secondary S2 variable. Results in Figures 10-11 correspond to the random grid and random sparse grid. 

Results for the cross validation correlation coefficient of P1 as a function of both correlation coefficients, 

that is in-between P1 and S1 and P1 and S2 are shown in Figure 12. Figures 13-14 show the mean absolute 

error of P1 as a function of correlation coefficient in-between P1 and P2 for several pre-selected values of 

correlation in between primary and secondary S2 variable.  

 We conclude that in the presence of only one secondary variable the average cross validation 

correlation coefficient when using all of the data (primary and secondary) in estimation is always higher 

(estimation is improved) than when using only primary data. Improvement is insignificant for all the 

correlations between primary and secondary variables below a cut-off of about 0.2-0.3. Probability to 

improve cross validation correlation coefficient between truth and estimate is close to 100% for all the 

correlations between primary and secondary variables above a cut-off of about 0.3-0.4.  

 In the case of estimation using 2 variables we come to the same conclusion. The average cross 

validation correlation coefficient increases when using primary and both secondary data, see Figure 15. 

The probability to improve cross validation correlation coefficient between truth and estimate is almost 

always close to 100% except for the case when both variables are very poorly correlated with the primary, 

see Figure 17.  Furthermore, it is also worth noting that there is a probability that cross validation 

correlation coefficient and mean absolute error when less correlated secondary variables are used could 

be better than slightly more correlated secondary variables are used due to the change in the sampling 

pattern. Overall, the sampling pattern plays a significant role in the implementation of cokriging. Semi-

regular grid of samples yields higher cross validation correlation coefficient.  
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Figure 1: Simulated map for primary variable P1 (top left), omni-directional semivariogram (top right), 90º 

azimuth direction semivariogram (bottom left) and 0º azimuth semivariogram (bottom right); in the 

semivariogram plots, experimental semivariogram (black dots) and semivariogram model (solid line). 

 

 
Figure 2: Cross semivariograms of P1 and S1. 
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Figure 3: Cross semivariograms of P1 and S2. 

 
Figure 4: Cross semivariograms of S1 and S2. 
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Figure 5: Simulated maps for secondary variable S1. Different plots correspond to different values for the 

correlation coefficient (0.1 to 0.9 with step 0.1) in-between primary P1 and secondary S1 data. 

 
Figure 6: Simulated maps for secondary variable S2. Different plots correspond to different values for the 

correlation coefficient (0.1 to 0.9 with step 0.1) in-between primary P1 and secondary S2 data. 
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Figure 7: Primary P1 (top left), secondary P1 (top right; the same for all correlation values) secondary P2 

(bottom right; the same for all correlation values) data locations selected randomly from a regular grid. 

 

 
Figure 8: Primary P1 (top left), secondary P1 (top right; the same for all correlation values) secondary P2 

(bottom right; the same for all correlation values) data locations selected randomly from the simulated 

maps. 
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Figure 10: Cross validation correlation coefficient of P1 as a function of correlation coefficient in-between 

P1 and P2 with ρP1,S2=0 (left) and ρP1,S2=0.902 (right) for the random grid. Average contribution is shown in 

dotted line and contribution of realizations in gray lines.  

 

 
Figure 11: Cross validation correlation coefficient of P1 as a function of correlation coefficient in-between 

P1 and P2 with ρP1,S2=0 (left) and ρP1,S2=0.902 (right) for the random sparse grid. Average contribution is 

shown in dotted line and contribution of realizations in gray lines.  

 

 

 
Figure 12: Average cross validation correlation coefficient for P1 in a sparse random sampling patterns 

(left) and gridded random sampling (right). 
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Figure 13: Mean absolute error of P1 as a function of correlation coefficient in-between P1 and P2 with 

ρP1,S2=0.902 (top left), ρP1,S2=0.602 (top right), ρP1,S2=0.299 (bottom left), and ρP1,S2=0 (bottom right) for the 

random grid. Average contribution is shown in dotted line and contribution of realizations in gray lines.  

 



Paper 127, CCG Annual Report 11, 2009 (© 2009) 

127-10 

       
Figure 14: Mean absolute error of P1 as a function of correlation coefficient in-between P1 and P2 with 

ρP1,S2=0.902 (top left), ρP1,S2=0.602 (top right), ρP1,S2=0.299 (bottom left), and ρP1,S2=0 (bottom right) for the 

random sparse grid. Average contribution is shown in dotted line and contribution of realizations in gray 

lines.  

 
Figure 15: Average mean absolute error of P1 in a sparse random sampling patterns (left) and gridded 

random sampling (right). 

 
Figure 16: Probability of cross validation correlation coefficient in co-kriging to be higher than in kriging 

(averaged).  


