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Non-uniqueness in Inverse Problems: a Case Study 
 

Amir H Hosseini and Clayton V Deutsch 

 

It is well-known that inverse problems are prone to stability and non-uniqueness problems.  The idea in 

this paper is to investigate the non-uniqueness problem arising from simultaneous estimation of mass 

transport parameters that are responsible for introducing and removing mass from saturated aquifers.  

The study is implemented using 1D and 2D examples, where bivariate relationships among  the sensitivity 

coefficients is investigated and objective function surfaces are plotted.  It is observed that designing an 

appropriate monitoring network and defining the weighting scheme in the objective function inverse 

proportional to the value of simulated concentration can effectively mitigate the non-uniqueness problem. 

 

Introduction  

Simultaneous characterization of uncertainty in rate-limited dissolution and field-scale biodegradation is 

important for development of an advanced screening tool for management of the TOR problems; but it is 

subject to potential numerical instabilities. For a real site with crude oil (BTEX) contamination and a 

simple representation of the source zone, Essiad et al. (2003) implemented inverse modeling in an 

‘optimal’ sense to estimate NAPL dissolution rate and individual first-order biodegradation rates for BTEX 

compounds as well as other parameters such as the recharge rate, hydraulic conductivity, and transverse 

dispersivity. They only achieved convergence when they estimated a single dissolution rate for all BTEX 

compounds and coupled the simulation of BTEX compounds through simultaneous use of oxygen during 

aerobic biodegradation (crossover effect). In other words, they failed to estimate individual dissolution 

rate and first-order biodegradation constants for each BTEX component due to high correlation between 

these parameters that results in parameter non-uniqueness. As pointed out by Carrera and Neuman 

(1986) and reviewed by Friedel (2005) and Carrera et al. (2005), the four primary reasons for parameter 

non-uniqueness are precision of numerical solution (e.g. round-off errors in calculation of sensitivities), 

numerical dispersion, local minima in parameter space and correlation among parameters. In the problem 

of simultaneous estimation of dissolution rate and biodegradation rate, non-uniqueness (uncertainty) of 

the parameter estimates is not only due to above-mentioned numerical instabilities, but also due to 

uncertainty in model structure and/or values of other hydrogeological or mass transport parameters. The 

uncertainties in the values of dissolution rate and first-order biodegradation rate due to uncertainty in 

model structure are investigated in Hosseini and Deutsch (2009) through implementation of stochastic 

inverse modeling. In this paper, the existence of local minima and high correlation among model 

parameters are investigated in the following 1D and 2D examples. 

 

Correlation between the parameters: 1D case 

To investigate the correlations between the parameters, first, a 1D example is presented where the 

sensitivity of concentrations with respect to the changes in the dissolution rate and first-order 

biodegradation rate (
diskS and λS ) are calculated and their relationship is studied. For a one-dimensional 

case, the mass transport equation can be written by: 
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where, only the velocity and dispersion coefficient in the x direction have been retained and the subscript 

s that represents solute species has been replaced by x to show that concentration is a function of space. 

Also, in Equation [1], the dispersion coefficient Dxx can be replaced by L|vx|, where L is longitudinal 

dispersivity and vx is the local velocity. Differentiation of Equation [1] with respect to kdis and  results in:  
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where, all terms have been defined previously. Also, one can differentiate the Equation [1] with respect to 

the local velocity vx. After rearranging, one can find the partial differential equation for the sensitivity of 

the local concentration with respect to the local velocity field (
xvS ): 
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where, all terms have been defined previously.  

Equations [2], [3] and [4] can be discretized by finite difference method and solved numerically. Figure 1 

shows the reference 1D hydraulic conductivity and head distribution and the development of the 1D 

plume until reaching to a semi-steady-state condition. The length of the 1D simulation domain is 300m, 

and the reference kdis and  are 0.0015 day
-1 

and 0.0044 day
-1

. The flow and transport boundary 

conditions include fixed head boundaries of 8m and 2m, and zero dispersive flux boundaries at both ends.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: (a) The reference (a) transmissivity, (b) steady-state head and concentration (c) after 2 days, (d) 

after 732 days, and (e) after 2562 days. 

 

Figures 2-a, b show (1) there exists a high correlation (for the given values of the parameters) between 

the sensitivities of the concentrations with respect to perturbations of dissolution rate and first-order 

biodegradation rate inside and outside of the source zone; and (2) the correlation between these 

parameters differs inside and outside of the source both in terms of magnitude of the sensitivities and in 

terms of the trends in the correlations (positive or negative). As shown in the subsequent 2D example, the 

observed changes in the correlations outside and inside of the source can be used to avoid instabilities in 

the inverse problem. In Figures 2-c, d, e, f, the cross-plots between the sensitivities of concentrations with 

respect to perturbations of local velocity field and the two transport parameters are presented. According 

to these figures, a very high correlation between these parameters is observed. Nevertheless, making any 

conclusive argument about requirement of decoupling the flow and transport inverse problems from this 

observation relies on the assumption of independency of local velocities at different locations, which is an 

invalid assumption. Thus, although one can not make a conclusive argument about decoupling of the 

inverse problems (subject to further research), the observations in Figures 2-c, d, e, and f show that when 

the observation locations are sparse and the range of spatial correlation of hydraulic conductivity is small, 

there may potentially be a high correlation between these parameters that may have an adverse effect on 

the stability of the coupled problem. This is subject to future research.       

 

 

H
y

d
ra

u
lic co

n
d

u
ctiv

ity
 (lo

g
e  m

/s) 
(a) 

H
ea

d
 (m

) 

(b) 

C
o

n
cen

tra
tio

n
 (m

g
/L

) 

(c) (d) (e) 



Paper 128, CCG Annual Report 11, 2009 (© 2009) 

 128-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: The cross-plots between (c) λS and 
diskS away from the source, (d) λS and 

diskS in the source 

zone, (c) 
xvS and 

diskS away from the source, (d) 
xvS and 

diskS in the source zone, (e) 
xvS and λS away 

from the source, and (f) 
xvS and λS  in the source zone. The cross-plots show the correlation between the 

sensitivities at time step 2562 days for kdis and  values equal to 0.0015 day
-1 

and 0.0044 day
-1

, 

respectively.  

 

Correlation between the parameters: 2D case 

 

The correlations between the parameters and existence of local minima can also be investigated in a 2D 

example. In 2D, the governing mass transport equation is written by: 

( )
( ) ( )[ ] CCCkCv

xx

C
D

xt

C
s

eq

s

NAPL

si

ij

s
ij

i

s λθ,0maxθθθ
θ

−−⋅+
∂

∂
−














∂

∂

∂

∂
=

∂

∂                                                     [5] 

where, , ki, h, qsr, C, Dij, vi, kdis, C
eq

, and  represent porosity, hydraulic conductivity, hydraulic head, 

dispersion coefficient, seepage velocity, NAPL dissolution rate constant, equilibrium concentration, and 

first-order biodegradation rate constant. 

 

Figure 3 shows the synthetic study site that has a heterogeneous hydraulic conductivity with a log-normal 

Gaussian distribution with a mean of -10.5 (loge m/s), standard deviation of 0.8 (loge m/s), and a spherical 

variogram with a nugget equal to 0.05 and a range equal to 30m. No-flow boundary conditions are 

assigned at the west and the east of the site and constant head boundary conditions equal to 3.6 m and 
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2.0 m are assigned at the north and the south of the site, respectively. In terms of mass transport 

properties and boundary conditions, a rectangular NAPL source zone was considered at the north of the 

site with a uniform substrate (e.g. benzene) soil concentration equal to 100mg/Kg, assuming that the 

initial mass fraction of the substrate in the NAPL is equal to 0.01. The substrate solubility, substrate and 

inert molecular weights are set equal to 0.00178gr/cm
3
, 78.1 and 101gr/mole, respectively. Dry soil 

density, total porosity and effective porosity are set equal to 1.6gr/cm
3
, 0.35 and 0.3, respectively. The 

dissolution rate and first-order biodegradation rates are set equal to 0.0011day
-1

, and 0.0044day
-1

, 

respectively. Zero dispersive flux boundary conditions are assigned at all boundaries. The longitudinal and 

transverse dispersivities are set equal to 1.0m and 0.2m, respectively. Figure 4 shows a few snap-shots of 

the development of the plume, which has been simulated for 10 years.      

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: (a) Reference hydraulic conductivity field, and (b) the associated piezometric head response. The 

monitoring locations numbered 1 to 12 are used to record the simulated concentrations and plot the 

objective function surface in Section 5.2.3.    

 

Figure 5 shows the cross-plots between the values of the 
diskS (always positive) and the absolute values of 

λS (always negative) in the 2D example for different values of dissolution rate. In the cross-plots shown in 

Figure 5, the location of the calculated sensitivity coefficients is highlighted using a gray-scale color bar, 

where the black end represents the points closer to the source zone, and light-grey end represents the 

points more away from the source zone.  
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Figure 4: Six snap shots from the development of the dissolved contaminant plume after (a) 1 day, (b) 1 

year, (c) 2 years, (d) 3 years (e) 7.5 years and (f) 10 years.   

 

Similar to what observed for the 1D case, Figure 5 shows the value of
diskS strongly depends on the value of 

the dissolution rate, and as the value of dissolution rate becomes smaller, larger correlation is observed 

between the sensitivity coefficients inside and outside of the source. Both 
diskS and

λS  sensitivities are 

also variable in time. The most important observations and conclusions related to Figures 5 are: (1) for 

large values of the dissolution rate, the correlation between the two parameters becomes smaller and 

parameter non-uniqueness becomes less of an issue. For this case, however, parameter insensitivity may 

become the problem; (2) for smaller values of dissolution rate (which are more feasible for real field 

applications according to Essaid et al. (2003) and Christ et al. 2006), a very high correlation exists between 

the two sensitivities. It is also observed that there are two different correlations between the two 

parameters depending on the location of the calculated sensitivities (similar to the 1D case). The fact that 

there exist two different correlations can be used together with definition of weights inverse proportional 

to the simulated concentration to improve the stability of the inverse problem. This can be achieved 

through designing the monitoring network in such a way that observation locations sample the locations 

close to the source zone as well as the locations well-away from the source, while the weighting scheme 

in the objective function has to be defined by: 
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where, 
iC , m

iC , qi and cvi are simulated concentration, measured concentration, source size quantile and 

coefficient of variation associated with each observation. If one also includes prior information for 

parameter values, the objective function will be:  
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where, 
PR

disk , disk , 
PRλ  and λ  represent the prior value for the dissolution rate, the estimated value for 

the dissolution rate, the prior value for first-order biodegradation rate, and the estimated value for first-

order biodegradation rate, respectively. The weights kw and λw are calculated as the inverse of the 

variance of the prior values: 
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where, klnσ and λσ ln are the standard deviations of prior values for dissolution rate and first-order 

biodegradation rate, respectively. The gradient of the objective function (Equation [7]) with respect to the 

transport parameters is calculated by:  
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that ensures preservation of sensitivity of the objective function with respect to sensitivity of the 

concentration with changes in the parameter values.  

 

The fact that designing an appropriate layout for the monitoring network improves the stability of the 

inverse problem for small values of dissolution rate can also be investigated through plotting the objective 

function surfaces (Figures 6, 7 and 8). The synthetic aquifer shown in Figure 5-6 with 12 monitoring 

locations is used for this purpose. The monitoring data sampled from the synthetic plume are recorded 

when the plume is under a steady-state condition at the time steps of 8 years, 8.5 years, 9 years, 9.5 years 

and 10 years. As shown in Figures 6 to 8, the objective function surfaces have been plotted with and 

without prior information, using the equations [5.16] and [5.15], respectively. The true parameter values 

used to create the reference case include kdis = 0.0011 day
-1

 and  = 0.0044 day
-1

. The prior information 

are included in calculation of the objective function using Equations [5.16] and [5.17]; and they are 

considered to have log-normal distributions with a mean (
PR

disk ) of 0.001 day
-1

 and standard deviation 

( klnσ ) of 1.0 logeday
-1

 for the dissolution rate and a mean (
PRλ ) of 0.0045 day

-1
 and standard deviation 

( λσ ln ) of 0.3 logeday
-1

 for the first-order biodegradation rate.  

 

 

 

 

 

 

 

 

  
diskS (mg.day/L) 

S
λ

 (
m

g
.d

ay
/L

) 

S
λ

 (
m

g
.d

ay
/L

) 

 
diskS (mg.day/L) 

(a) (b) 



Paper 128, CCG Annual Report 11, 2009 (© 2009) 

 128-7 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

   
Figure 5: The cross-plots between the values of 

diskS and the absolute values of λS for (a) kdis=0.0011day
-1

 

and T=5yrs, (b) kdis=0.0011day
-1

 and T=10yrs, (c) kdis=0.011day
-1

 and T=5yrs, (d) kdis= 0.011day
-1

 and 

T=10yrs, (e) kdis = 0.175day
-1

 and T=5yrs, (f) kdis = 0.175day
-1

 and T=10yrs. The gray-scale color bar shows 

the location of the calculated sensitivity coefficients.  
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Figure 6: The objective function surfaces plotted based on observations in wells 1 to12, (a) without any 

prior information and (b) with prior information.  
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Figure 7: The objective function surfaces plotted based on observations in wells 1 to 4, and 9 to 12 (a) 

without any prior information and (b) with prior information.  
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Figure 8: The objective function surfaces plotted based on observations in wells 1 to 4 (a) without any 

prior information and (b) with prior information.  

 

In Figure 6, monitoring data includes samples from all 12 wells. In Figure 7 monitoring data includes 

samples from wells 1 to 4 at the upstream of the site and wells 9 to 12 at the downstream of the site; and 

in Figure 8 monitoring data includes samples from wells 1 to 4 at the upstream of the site (in the source 

and close to the source zone).  It is evident from the Figures 6 to 8 that if the layout for the monitoring 

network is designed in such a way that the upstream (near the source zone) as well as downstream (near 

the edge of the plume) are sampled, the stability of the problem will significantly be improved. Comparing 

Figures 6 and 7, one may also observe that inclusion of the middle wells in calculation of the objective 

function has little effect on the improvement of the stability of the problem. The prior information has a 

secondary effect on the stability of the inverse problem. Although a good set of priori information are 

used to create the objective function surface in Figure 8-b, it has not avoided the problem of a local 

minima in this case. Comparing Figure 6-b to Figure 6-a and Figure 7-b to Figure 7-a, one can observe that 

inclusion of good prior information only slightly improves the stability of the problem.  
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