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Accounting for Nonlinear Relations in Bayesian Updating 
 

Sahyun Hong and Clayton V. Deutsch 

 

Bayesian Updating (BU in short) is a widely used technique to combine primary and multiple secondary 

variables.  In this work, advanced BU technique is considered to account for non-linear relation among 

primary and secondary variables.  The work consists of two parts.  In the first part, new expression of BU 

equation is suggested and some advantages are addressed over the conventional expression that is not 

clearly understood how different conditional pdf from disparate sources are combined.  In the second part, 

an approach is suggested to account for the non-linear relation among variables using the new form of 

updating equation.  Joint pdf between primary and secondary variables is modeled in a nonparametric 

way and constraints the joint pdf must meet are described in the latter part.  Different from the 

conventional BU, the considered approach gives the locally varying estimation variance that better reflects 

the relation between local primary and secondary data.   

 

Introduction 

Bayesian updating technique was first proposed in 1996 by Doyen and since then the technique has been 

widely adopted to integrate multiple soft secondary variables.  The BU is fundamentally equivalent to the 

collocated cokriging using the Markov type screening assumption developed by Xu et al. but its formalism 

is different from the collocated cokriging (Doyen et al., 1996; Chiles and Delfiner, 1999; Xu et al., 1992).  

Collocated cokriging is an extended form of kriging expressed by a weighted linear combination of nearby 

primary and collocated secondary data, and Bayesian updating expresses the updated distribution by the 

combination of probability distributions conditioned to each primary and secondary variable. 

 This work introduces the detailed derivation of Bayesian updating equation and proposes an 

alternative form to the conventional BU equation.  New expression gives an explicit interpretation such 

that how probability distributions derived from disparate data sources can be combined leading to the 

final updated distribution, and where the global mean and variance play in the updating equation. 

 Because new updating equation decomposes the influence of the primary and secondary 

variable, separate calibration of secondary variable from primary variable is possible.  An approach to 

account for non-linear relations among primary and secondary variables is proposed using the new form 

of updating equation.  The joint probability density functions are modeled in a nonparametric way using 

kernel density estimator.  Because the (initial) joint pdf does not meet the marginality condition fitting 

algorithm is described to refine the modeled joint pdf into the corrected joint pdf that satisfies all lower 

order marginal conditions.  The considered marginal fitting algorithm directly accounts for the differences 

between the empirical and reference marginal pdf.  Conditional pdf at a given secondary value can be 

drawn from the corrected joint pdf and thus mean and variance are numerically estimated based on the 

extracted conditional pdf.  The secondary data derived moments are now easily anchored into the new 

form of updating equation. 

 

Resolution of Bayesian Updating 

The primary and secondary variables are denoted as random variables Z and Y, and they are already 

transformed into normal score values with mean of 0 and variance of 1.  A posterior distribution of 

interest is the conditional distribution of Z given the surrounding primary and collocated secondary data: 

 
1
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n

f z z z y A∈u u u u u  (1) 

where z(u1),…, z(un) are nearby primary data at different locations ui, i=1,…,n, and y(u) is a collocated 

secondary data retained as conditioning data, respectively.  A single secondary variable is considered as 

an example, but any equations derived in this work can be simply extended into multiple secondary 

variables using vector and matrix notation.  The equation (1) is re-expressed as: 
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The conditional distribution f(z(u1),…, z(un),y(u)|z(u)) in the numerator is approximated as 

f(z(u1),…,z(un),y(u)|z(u)) ≅ f(z(u1),…,z(un)|z(u))×f(y(u)|z(u)) under independence assumption between 

collocated y(u) and local surrounding primary data [z(u1),…,z(un)] conditioned to estimate of primary 

variable Z at u, z(u).  This independence assumption alleviates the requirement of inferring the joint 

distribution f(z(u1),…,z(un),y(u)|z(u)) which is difficult to model because it requires joint modeling of mixed 

variables from different locations.  The equation (2) is approximated as: 
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Conditional independence assumption decouples the posterior distribution into two terms: (1) 

distribution associated with the primary data at different locations, f(z(u1),…,z(un)|z(u)), and (2) the 

distribution associated with the primary and secondary variable relation, f(y(u)|z(u)).  Probabilistic terms 

in the right hand side of equation (3) are likelihood function that treats the unknown estimate z(u) as 

fixed.  They are re-expressed as probability functions of the unknown estimate given the fixed data: 
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where normalizing C term is f(z(u1),…,z(un))×f(y(u))/(f(z(u1),…,z(un),y(u)).  Although Bayesian updating 

technique has been commonly used in many cases, there are few references explaining how the final 

updating equations are reached (Neufeld and Deutsch, 2004; Deutsch and Zanon, 2004; Ren et al., 2006).  

Equation (4) provides a posterior distribution through the multiplication of three probability distributions.  

f(z(u)|z(u1),…,z(un)) is a univariate conditional distribution of Z conditioned to local nearby data 

z(u1),…,z(un).  Under multiGaussianity (MG) assumption, kriging parametrically constructs the Gaussian 

distribution with mean of kriging estimate and variance of kriging varianc (Journel and Huijbregts, 1981; 

Verly, 1983): 
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where zP(u) and σ
2

P(u) are estimate and estimation variance obtained by simple kriging at u.  Subscript P 

means that those are primary data derived moments.  The f(z(u)|y(u)) in equation (4) is: 
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zS(u) and σ
2

S(u) are estimate and variance obtained by overall relation between primary and secondary 

variables.  Subscript S are added since they are secondary data derived moments.  Due to linear relation 

assumption between Z and Y, the conditional mean and variance zS(u) and σ
2

S(u) are simply calculated as 

zS(u) =  ρ × y(u) and σ
2

S(u)=1–ρ2
, where ρ is a linear correlation coefficient between Z and Y.  zS(u) 

depends on the local secondary value y(u) but variance σ
2

S(u) is constant over u∈A.  The last term 

function of z(u) in equation (4) is a global distribution of the primary variable f(z(u)): 
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Even though the primary variable Z has zero mean and unit variance (σ
2
=1, m=0), m and σ

2
 symbols are 

left in the above equation.  One can follow how the global mean and variance play in the final updating 

equation by letting symbols remain. 
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Elementary probability distributions consisting of a posterior distribution are all Gaussian (equations (5), 

(6) and (7)).  Multiplication of Gaussian distributions is another Gaussian; thus, the posterior distribution 

becomes Gaussian.  Equations shown in (5), (6) and (7) are inserted into the (4) as following: 
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Terms inside exponential function are grouped and terms independent of z(u) are absorbed in the 

proportionality then: 
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Equation (9) is arranged with respect to z(u): 
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Terms independent of z(u) were absorbed in the proportionality again.  Equation (10) follows a quadratic 

form of exp{-Az
2
 + Bz} where A and B are parameterized coefficients.  This can be easily converted into the 

basic form of Gaussian function: 
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A posterior distribution f(z(u)|z(u1),…,z(un),y(u)) becomes a Gaussian distribution with the mean of B/2A 

and variance of 1/2A while A and B are defined in the equation (10): 

 2 1
( ) and ( )

2 2
BU BU

B
z

A A
σ = =u u  (12) 

The Bayesian updated variance and estimate at location u are finally: 
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A set of equation (13) is a new form of Bayesian updating equation compared with the conventional form 

below: 
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Equations (13) and (14) are exactly same under letting m = 0 and σ
2
 = 1 in the new updating equation (13).  

The main advantage of new expression is that the updated parameters zBU and σ
2

BU are clearly 
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decomposed into combination of local and global parameters derived from diverse sources.  This form is 

better than the original equation in terms of simplicity, lucidity and potential applications such as 

accounting for non-stationary global mean and variance or non-linear relations among primary and 

secondary variables.  The application of the new form to the nonstationary modeling was discussed in 

Sahyun and Deutsch (2008).  

 

Accounting for Non-linear Relations between Primary and Secondary Variables 

Several assumptions have been made to derive the Bayesian updating equation and key assumptions are: 

(1)multiGaussianity of primary variables at different locations, which allows constructing the local 

conditional distribution f(z(u)|z(u1),…,z(un)) by simple kriging at u, (2)linear relation between primary and 

secondary variables, which allows building the conditional distribution f(z(u)|y(u)) by linear correlation 

coefficient ρ.  Only under Gaussian assumption on distributions (multivariate Gaussian in spatial context 

and multivariate Gaussian in variable context), analytical derivation of updating equation (equations (5) 

through (13)) is possible.  Relaxing the linear relation assumption between primary and secondary 

variables is focused here.  MultiGaussianity assumption is still adopted to build the local conditional 

distribution f(z(u)|z(u1),…,z(un)).   

 Conventional Bayesian updating assumes the multivariate Gaussian relation after univariate 

normal score transformation for each variable.  An illustration shown in the figure-1 represents a highly 

non-linear feature between two normal scored variables (normal scored values of porosity and 

permeability from 3D Amoco data set).  Normality of univariate marginal distribution is a necessary 

condition, but not a sufficient condition for joint Gaussianity.   

 

 
 Figure-1: An illustration of non-linear relation after individual normal score transform of each variable. 

 

The Proposed Methodology 

To capture the non-linear relation among primary and secondary variables, the joint relation is first 

modeled in a nonparametric way.  Kernel density estimator is considered to model joint pdf f(z,y) without 

data distribution assumption; the method applies the specified kernel function to the pairs of collocated 

primary and secondary data and then approximate the underlying true distribution through adding up the 

applied kernel function values.  Figure-2 schematically illustrates the data-driven pdf. 
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 Figure-2: A schematic illustration of the bivariate pdf modeled in a nonparametric way 

 

The kernel estimate for a single variable is defined by (Scott, 1992): 
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where h is a bandwidth of the applied kernel function, also referred to a smoothing parameter because h 

controls the smoothness of the resulting density function.  W(⋅) is a kernel function satisfying W(⋅)≥0 and  

∫W(x)dx = 1 and these conditions make the resulting density estimates be positive and grand total of 

densities be 1. n is the number of used samples for pdf modeling.  Bivariate pdf is constructed by product 

kernel density estimator (Scott, 1992): 

 

11 2 1 2

1 ( ) ( )
( , )

n

i i

i

z Z y Y
f z y W W

nh h h h=

    − −
= ×    

×     
∑  (16) 

where W(⋅) is a univariate kernel applied to each variable Z and Y.  Equation (16) is referred to a product 

kernel estimator for joint pdf modeling (Scott, 1993).  h1 and h2 are kernel bandwidths for variable Z and Y.  

Scott (1993) recommended a data-based optimum bandwidth: 

 
1/( 4)ˆ d
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where σ̂  is a standard deviation of samples and d is the number of variables.  Next step is aimed at 

checking axioms of the modeled joint pdf: non-negative density functions, closure condition and 

reproduction of lower order marginal distributions.  Kernel density estimator meets first two axioms if the 

used kernel function W(⋅) follows W(x)≥0 and ∫W(x)dx=1.  The third condition is a marginality condition 

that the p-variate joint pdf should reproduce p′-variate pdf where p′ < p.  The followings are marginal 

conditions that the modeled bivariate pdf must meet: 

 ( , ) ( )f z y dy f z=∫  (18) 

 ( , ) ( )f z y dz f y=∫  (19) 

The marginal relation described in (18) states that integration of the joint probability distribution over 

possible outcomes of secondary data should amount to the global probability distribution of the primary 

variable Z, f(z).  The second marginal relation (19) states that integration of the joint probability 

distribution over possible outcomes of primary variable should reproduce the distribution of secondary 

variable Y, f(y).  

 The global distribution of the primary variable f(z) is experimentally obtained from well samples.  

Declustering techniques such as cell or polygonal declustering is used to obtain the representative f(z) if 

there is a bias in data distribution caused by spatial clustering of wells.  The secondary data distribution 

f(y) is modeled with the densely sampled values over the area.  The modeling of f(y) is very reliable. 

 There is no guarantee, however, that the modeled joint pdf f(z,y) meet these marginal 

conditions.  f(z,y) is modeled based on the limited samples (n) that is much less than the number of 

secondary values that constitute the marginal distribution f(y).  The collocated secondary data at the 

sample locations ui, i=1,…,n normally do not cover the full range of the secondary data; therefore, the 

marginal distribution from the joint distribution may not match the secondary marginal distribution.  

Figure-3 illustrates this case.  The bivariate distribution fKDE is modeled using four data points (black dots).  
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Integration of the bivariate distribution over the primary variable (shown as dashed line on horizontal 

axis) has less variability and nearly zero densities outside the collocated secondary values even if there are 

some non zero frequencies over that range.  Thick solid line represents a secondary data pdf denoted as 

freference and it is built from large number of samples.  freference have variations in densities through the 

entire range of secondary values. 

 

  
Figure-3: Schematic illustration for comparing the reproduced with the known marginal distribution.  

Since the joint distribution is modeled with the limited well samples its reproduced marginal is not 

consistent with the (very reliable) marginal pdf which is a distribution of secondary data. 

 

Given the marginal relations described in equations (18) and (19), an algorithm is proposed to impose 

them on the joint pdf.  The marginals are derived from initial joint distribution and compared with the 

reference marginals.  The differences are directly accounted for in order to adjust the initial joint 

distributions.  This correcting process is performed as described in the following steps: 

Step1. Model the distribution of secondary variable, f(y) and global distribution of primary variable, 

f(z).  Declustering is considered for obtaining an unbiased f(z) if required. 

Step2. Model the joint distribution f(z,y) and define it as f
(0)

 to differentiate from the resulting joint 

distribution. 

Step3. Scale the f
(0)

 to ensure the marginal distribution shown in equation (19).  The scaling equation 

below is proposed for ensuring the imposed marginal condition: 
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The ratio f(y)/∫f(z,y)dz is a modifying factor.  If the marginal relation (19) is satisfied then this factor 

becomes 1 leading to no changes in f
(0)

.  Otherwise, f
(0)

 is adjusted by the modifying factor that 

accounts for the differences between the reference f(y) and reproduced marginal distribution 

∫f(0)
(z,y)dz.  The corrected distribution under the marginal condition is set as f

(1)
 for the next step. 

Step4. Scale the f
(1)

 to ensure the marginal condition shown in equation (18).  Similar to the step 3, the 

scaling equation below is for updating the f
(1)

: 
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The ratio f(z)/∫∫f(1)
(z,y)dy is another modifying factor.  If the marginal relation (18) is met then the 

factor becomes 1 leading to no change in f
(1)

.  Otherwise, f
(1)

 is adjusted by the modifying factor 

accounting for the differences between the reference marginal distribution f(z) and the reproduced 

marginal distribution ∫∫f(1)
(z,y)dy.  The corrected distribution under marginal condition (18) is set as f

(2)
. 

Step5. Terminate the procedures if stopping rule is met, otherwise go to step 6. 

Step6. Reset f
(2)

 into f
(0)

 and repeat through steps 3 and 5. 

Step 1 and 2 are initial steps to establish the marginal distributions f(z) and f(y).  Steps 3 through 5 are 

employed to correct the initial distribution with the considered marginal distributions.  The correction is 

performed by directly accounting for the differences.  Step 5 terminates successive adjustments done 
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through step 3 and 4 when the joint distribution becomes stable.  A satisfactory stopping rule is to decide 

on a threshold δ, for example, δ = 0.1 or 0.01, and stop when a complete correcting cycle (steps 3 and 4) 

does not cause changes in averaged differences of density functions by more than the pre-defined 

threshold δ: 

 ( ) ( 1) 1
| ( , ) ( , ) |t t

avergaed diff f z y f z y
C

δ−= − <   

where t and (t-1) are the current and previous correction steps, respectively.  Another stopping condition 

might be test an error between the reproduced and reference marginal distributions.  The algorithm 

would stop iterations when the error becomes less than a specified tolerance: 
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averaged e f y f y averaged e f z f z

C C

Total Averaged error e e

= − = −

= +

 

The proposed marginal fitting algorithm corrects the initial joint pdf under marginal conditions.  Once the 

joint pdf is achieved, conditional pdf can be immediately derived by Bayes law.  The conditional 

distribution given secondary values, f(z(u)|y(u)) at u, is extracted from the corrected joint pdf f(z,y).  

Conditional mean and variance are calculated using the extracted conditional distribution, which are 

finally secondary data derived local estimate and variance, zS(u) and σ
2

S(u).  The obtained mean and 

variances are put into the Bayesian updating equation (13).  Following charts (figure-4) gives whole idea of 

the proposed approach.   

 
Figure-4: Workflow for the proposed approach. 
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The suggested algorithm accounts for the non-linear features between primary and secondary variables 

and its modeled joint pdf exactly reproduces lower order marginal distributions.  The conditional 

distribution given any value of secondary data can be drawn from the obtained joint distribution.  There is 

no guarantee that the extracted conditional distribution is a univariate Gaussian; it can be any shape of 

distribution (see the extracted 1-D distribution at step 3 in the above flow chart).  Univariate Gaussian 

fitting is made for the extracted conditional distribution because the conditional pdf f(z(u)|y(u)) can be 

fused with another local conditional pdf f(z(u)|z(u1),…,z(un)) into a single updated Gaussian distribution 

only when those distributions are all Gaussian (see the equations through (5) and (11)). 

 

Examples 

Amoco data set is used for the application of a new Bayesian updating method.  Permeability is 

considered as primary variable to be modeled and porosity is considered as a secondary variable.  

Sampled porosities at 62 wells are simulated to initialize the exhaustive secondary data.  65-by-65 grids 

are defined in X and Y directions.  Figure-5 illustrates the simulated porosity field and permeability 

samples at well locations.  Figure-6 shows a scatter plot of the normal scored permeability and porosity at 

collocation.  Bivariate relation does not seem to be bivariate Gaussian despite of univaraite normality.  

Evaluating the bivariate normality can be performed through plotting the squared generalized distances 

from data pairs against the chi-square distances (Johnson and Wichern, 2002).  An illustration shown in 

the right of the figure-6 is a plot for the calculated distances from normal scored data pairs and analytical 

chi-square distances (see the reference of Johnson and Wichern, 2002, through p182 – 187 for the details 

about chi-square distances).  The plot should resemble the straight line through the origin if bivariate 

normality is guaranteed.  Systematic curved pattern shown on the chi-square distance plot suggests lack 

of normality for the normal scored data pairs.   

 The joint relation among variables was modeled by kernel density estimator and the described 

marginal fitting algorithm was applied.  Figure-7 shows the modeled f(z,y).  Kernel bandwidths are chosen 

using the analytical suggestion shown in the equation (17).  Range of primary and secondary variables are 

discretized into 50 bins and joint densities are estimated at every 50×50 bins.  Given the actual secondary 

value at location u, y(u), the closest binned y value is looked-up in order to extract the conditional 

distribution of Z at the conditioned y(u).  Too few bins may induce a discretization error.  The chosen level 

of 50 bins did not induce discretization errors by plotting the actual secondary values versus the looked-

up binned values.  The bivariate pdf shown in the figure-7 was refined pdf under the marginal constraints 

using the described marginal fitting method.  Averaged marginal errors quickly drop during first few 

iteration steps.  100 marginal fitting iterations make the bivariate pdf be stable and it took a few seconds 

on a 3 GHz personal computer.  

 Based on the bivariate distribution, we derived the conditional mean and variance of the primary 

permeability given the secondary porosity.  In a nonparametric modeling, the conditional mean and 

variance are not determined by the coefficient of correlation but are calculated based on the extracted 

conditional distribution f(z(u)|y(u)), u∈A.  Conditional mean is numerically calculated through the binned 

zk, k=1,…,50: 
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E Z Y y z f z y z

f y= =

= = =∑ ∑
u

u u

u

 (22) 

Extracted 1-D pdf curve f(zk,y(u)) is a function of binned primary variable zk with a fixed y(u).  The 

conditional pdf f(zk|y(u)) is acquired from dividing f(zk,y(u)) by f(y(u)).  Conditional variances are also 

calculated by: 

 [ ] [ ]
50 50

2 2

1 1

( , ( ))
{ | ( )} ( | ( ))

( ( ))

k
k k k

k k

f z y
Var Z Y y z z f z y z z

f y= =

= = − = −∑ ∑
u

u u

u

 (23) 

where z is a conditional mean of Z given the y(u).  Figure-8 demonstrates the conditional means and 

variances calculated based on the local conditional pdf.  Black dots superimposed with the bivariate pdf 

map represent the calculated conditional means.  Conditional variances are plotted in the right.  

Conditional means are not linear and conditional variances are not constant during the whole variety of 

conditioned secondary values.  Moreover, it is somehow related to the variation of secondary values.  For 
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example, the change of conditional variance is sharp when the given secondary values (normal scored 

porosity) are high or very low.  Given the intermediate range of secondary data, about from -2.1 to 1.8, 

the conditional variance tends to decrease.  Figure-9 shows maps of estimates and estimation variance 

derived from the secondary data. 

 Conventional BU assumes linear relation between primary and secondary variable so that it 

provides a constant estimation variance over the domain.  Figure-10 demonstrates the comparison of the 

conditional estimates and estimation variance from using Gaussian assumption and nonparametric 

approach.  Linear correlation (0.642) is calculated from the data pairs of normal scored porosity and 

permeability as plotted by open circles in the figure.  Black solid line is an estimate given the secondary 

data with the linear regression, and grey dashed line is an estimate from nonparametric approach.  

Regression line over-estimates when the conditioned secondary is high or low.  Estimates from two 

different approaches are close when intermediate range of secondary values is given.  Right plot in the 

figure represents the estimation variances (horizontal axis) versus the given secondary values (vertical 

axis).  Locally varying variances (dashed line) fluctuates from -59.9% to 70.1% compared with the constant 

variance 0.588 = 1–ρ2 
(solid line).  The real benefit of the nonparametric approach would be observed 

when the secondary derived estimation variance is subsequently anchored into the local uncertainty 

distribution obtained by simple kriging with well data using BU equation.   

 Integrating more than two secondary variables is nothing but a problem of dimension.  Seismic 

amplitude data is added as another secondary variable.  The modeling of joint distribution is required in 3-

D probability space.  Three variables are transformed into normal unit and denoted by Z, Y1 and Y2 for the 

primary permeability and secondary porosity and seismic amplitude.  f(z,y1,y2) are modeled and 

constrained by marginal distributions, f(z) and f(y1,y2).  Figure-11 shows a 3-D visualization of trivariate pdf 

cut by arbitrary sections.  Lower order marginal distributions are reproduced from the modeled f(z,y1,y2) 

and they all reasonably honor the experimental data scatter plots and reference secondary marginal 

distribution.  Resulting estimates and estimation variance are shown in the figure-12.  Figure-13 

demonstrates the accuracy plots of secondary data derived results from different approaches.  Goodness 

statistics is shown on each accuracy plot (Deutsch, 1997).   

 

Excessive Local Variance  

The considered nonparametric approach provides locally varying estimate and estimation variance based 

on the extracted conditional pdf at a given secondary value.  There is no bound of the estimates; 

however, the estimation variance has a limit to maximum 1, that is 0≤σ
2

S(u) ≤1, u∈A.  It happens that the 

calculated local estimation variance is greater than 1 when the extracted conditional pdf at a given 

secondary value is spread out.  As smaller kernel bandwidths are considered when joint pdf is modeled 

using kernel density estimator, larger dispersion in conditional pdf is often observed.  Figure-12 

schematically illustrates this case.  Bivariate pdf is modeled satisfying all marginal relations.  Given the 

bivariate pdf, conditional distribution at a certain value of y(u) is drawn.  Although sum of conditional pdf 

f(z|y(u)) over y(u) amount to the global pdf f(z), the shape of constituent conditional pdf is various in 

shape.  The variance numerically calculated is high and perhaps larger than 1 if the extracted conditional 

pdf resembles bimodal shape. 

 
Figure-14: Schematic illustration showing the case of when the excessive local conditional variance 

happens. 

Z

Y

y(u)

f(z|y(u))f(z,y)

y(u)
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One option for correcting the excessive conditional variance is to reset the variance into 1 if it is greater 

than 1.  This option can be simply implemented with the loss of smooth changes in estimation variance.  

Another option is to change the conditional variance smoothly.  New conditional variances are obtained 

from adjusting the initial variance by the reduction factor.  For instances, 

 

2
ini ( )

max .var
2 2

new ini

1
( ) ( )

max . var

σ

σ σ

 
  
  

=  
 

u

u u   (24) 

where max. var is the maximum value among the initial conditional variances 
2

S ( ), Aσ ∈u u .  The 

reduction factor in equation (24) modifies variance smoothly as shown in the figure-15. 

 
Figure-15: Correcting the initial conditional variances greater than 1 by the reduction factor. 

 

In the figure-15, the maximum conditional variance is 1.4 and all initial variances are adjusted by a factor 

resulting in a dashed line.  One may want to minimize the change in the initial variances if they are valid 

falling in [0,1].  α in the equation of figure-16 regulates the degree of changes.  α=0 is equivalent to linear 

scaling by (1/max. var).  Linear scaling (α=0) may be considered if the maximum value of initial conditional 

variance is not far greater than 1, and smooth change with α>0 might be considered otherwise.  The 

results shown in the figure-9 and 12 are all corrected variances using the equation (24). 

 
Figure-16:  α controls the degree of change in the initial local conditional variances. 

 

Conclusions 

Bayesian updating has been widely adopted to integrate secondary data.  The updating equation; 

however, is difficult to understand how information source is combined.  New interpretation of Bayesian 
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updating equation is introduced.  Although conventional and new expressions are mathematically 

equivalent, new forms have some advantages rather than old ones.  New form of updating equation 

decomposes the posteriori pdf into the combination of elementary pdf related to the primary and 

secondary data and it can be clearly understood how different information source is combined.   

This work applied new expressions to the modeling of non-linear features among primary and secondary 

variables.  Joint pdf is modeled in a nonparametric way and sequential marginal fitting algorithm refines 

the modeled joint pdf into the corrected joint pdf that meets all marginal constraints.  The described 

marginal fitting algorithm directly accounts for the differences between empirical and reference marginal 

distributions.  Given the joint pdf, the conditional pdf at a secondary value is extracted, and estimate and 

estimation variances are calculated using the extracted conditional pdf.  The resulting estimation variance; 

thus, is not constant but locally varying which better reflects the relation of primary and secondary 

variables.  In a future work, the estimated moments from secondary data should be combined with the 

moments from the primary data through the updating equation, and comparative study of simulation 

results from conventional and nonparametric approach will be performed. 
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Figure-5: Simulated porosity used as secondary variable (left) for predicting permeability and sampled 

permeability at 62 well locations (right). 

 
Figure-6:  Cross plot of normal scored permeability (primary) and porosity (secondary) variables.  To check 

the bivariate normality, the generalized square distances are calculated from data and plotted against the 

analytical chi-square distances.  Systematic differences represents non-biGaussian relation. 

 
Figure-7: Modeled bivariate pdf.  Horizontal and vertical axes represent the primary and secondary 

variables.  The described marginal fitting algorithm was applied to obtain this joint pdf. 

 
Figure-8: Conditional means and variances obtained from the joint pdf modeled in a nonparametric way.  

Black dots (left) are the calculated conditional means of NS:per with respect to the varying secondary 

values NS:por.  Open circles (right) are the conditional variances with respect to the secondary values. 

Simulated Porosity (used as sec var)

East

N
o
rt
h

0 10400
0

10400

-2.0

0.0

2.0

Locations of 62 wells

-2.0

0.0

2.0
NS:perm

N
S

:P
o

r

NS:Per

Per vs Por at collocation (normal unit)

-2.50 -1.50 -0.50 0.50 1.50 2.50

-3.67

-2.67

-1.67

-0.67

0.33

1.33

2.33

3.33

Number of data 62

correlation .642

rank correlation .618
C

h
i-
s
q

u
a

re
 q

u
a

n
ti
le

s

Distances from data pairs

Chi-square plot for the ordered distances

0.0 5.0 10.0 15.0 20.0

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Nonparametric bivaraite pdf

0.

0.003

0.003

0.0

-2.50 -1.50 -0.50 0.50 1.50 2.50

-3.68

-2.68

-1.68

-0.68

0.32

1.32

2.32

3.32

-3.68

-2.68

-1.68

-0.68

0.32

1.32

2.32

3.32

densities

NS:perm Conditional variance

N
S

:p
o
r

N
S

:p
o
r

conditional mean of NS:perm conditional variance of NS:perm

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0



Paper 129, CCG Annual Report 11, 2009 (© 2009) 

 129-13 

 
Figure-9: Secondary data derived estimates and variances. 

 
Figure-10: Comparison of estimates and estimation variance from two different approaches.  Solid and 

dashed lines represent estimate and estimation variance using linear assumption among variables and 

nonparametric approach, respectively. 

 

 
Figure-11: The joint pdf modeling with three variables: primary of permeability and secondary of porosity 

and seismic.  Lower order of distributions are well reproduced. 
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Figure-12: Results from integrating two secondary variables using nonparametric modeling approach. 

 

 
Figure-13:  Accuracy plots for the results from different approaches: linear assumption (top) and 

nonparametric (bottom).  Goodness statistics are shown on each plot (Deutsch, 1997). 
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