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3D Trend Modeling by Combining Lower Order Trends 
 

Sahyun Hong and Clayton V. Deutsch 

 

Large scale trends are important features that should be accounted for in geostatistical modeling, 

however, unfortunately there is no geostatistical technique to account for the trend in an implicit way.  A 

typical way for 3D trend modeling could be divided into three steps: (1) model the areal trend, (2) model 

the vertical trend against vertical coordinate, and (3) merge 2D areal and 1D vertical trend into 3D trend.  

Conditional independence assumption between the modeled 2D and 1D trends has been used for the 

combining lower order trends.  The main drawback of the simple method is that the combined trend value 

can be unfairly larger or lower than both input aerial and vertical trend value leading to a large variability 

in 3D trend model of which smoothness is an intrinsic characteristic.  This work advances a combination 

method with introducing weights on lower order trends.  The resulting 3D trend is adjusted to reasonably 

reproduce the input trends and not to be very high or very low.  The related program is implemented with 

several options in combination models.   

 

Introduction 

A typical workflow of geostatistical reservoir modeling would start from large scale trend modeling which 

will be used either for brief reservoir interpretation such as a quick-look of reservoir property distribution 

or for a deterministic value that the detailed variations of simulated properties are added into.  For the 

latter purpose, automatic fitting of a trend within the kriging formalism, such as ordinary kriging, could be 

considered; however, it only works in presence of many data.  A far better approach is to model the trend 

in an explicit way (Deutsch, 2002). 

 In practice, we consider the vertical trend first and then map areal trends.  Vertical proportion 

curve (VPC) for facies is constructed from plotting the vertical coordinate and averaged proportions of 

facies.  It should be constructed to look for and quantify vertical trends.  Areal trend is separately 

modeled from vertical trends.  Vertically averaged proportions at well locations are used for areal trend 

modeling.  Moving window average or kriging with moderate nugget effect provides a smoothed 2D trend 

map.  Soft secondary information such as seismic map often helps for identifying areal variations. 

 For full 3D proportion modeling, combining lower order proportions has been considered since it 

is easier to fit the vertical and areal proportion than direct modeling a 3D proportion.  In this approach, 

the elementary 2D and 1D proportion are standardized and multiplied by a global proportion.  There is a 

risk; however, that the combined proportions are toward extreme values of 0 or 1 which is far smaller or 

larger than the used areal and vertical proportions.  This non-convexity, falling outside the input values, 

leads to a high variability in the final 3D trend of which smoothness is an intrinsic characteristic.  Besides, 

this property may prevent the modeled 3D trend from reasonable reproduction of input trends. 

 This work advances a weighted combination method and its related program for building 3D 

trend.  Weights are introduced to adjust the influence of proportions used to combine.  By imposing 

weights, the combined proportion in 3D is adjusted not to be very high or very low.  The related program 

is implemented with several options in weighting scheme.  Examples are tested with the program.  The 

effectiveness of the chosen combination methods is evaluated in terms of how well input information is 

reproduced from the modeled 3D trend. 

 

Methodology 

The theoretical background of combining proportions is based on the probability combination schemes 

that approximate the probability of geologic event jointly conditioned to diverse data sources through 

combining the calibrated probabilities conditioned to individual data source (McConway, 1981; Journel, 

2002; Krishnana, 2004).  Integrating the 2D and 1D proportion that may be modeled by different data 

sources can be viewed as a probability combination problem.  Consider the proportion of facies k in (x,y,z) 

location pk(x,y,z) given the areal proportion pk(x,y) and the vertical proportion pk(z), k=1,…,K where K is 

the number of facies.  Of course, areal and vertical proportions meet closure property such as: 
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The permanence of ratios (PR-model in short) models pk(x,y,z) through combining elementary proportions 

pk(x,y) and pk(z) such as (Journel, 2002): 
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pk is a global proportion of facies k.  The estimated proportion pk(x,y,z) always lies within [0,1] .  The PR-

model allows us to combine areal proportion pk(x,y) and vertical proportion pk(z) under independence 

assumption.  Notice that the estimated proportion in equation (2) meets closure condition only when 

binary facies is considered, k=1 and 2.  If multiple categories are of interest, the closure condition 
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=∑  is not guaranteed, and thus the PR-model is no longer valid in case of multiple 

categories.  Let us show a counterexample as following: 

 
pk pk(x,y) pk(z) pk(x,y,z) 

k=1 0.2 0.3 0.1 0.16 

k=2 0.3 0.4 0.3 0.4 

k=3 0.5 0.3 0.6 0.3913 

marginal 1 1 1 0.9513 

The marginal sum of pk(x,y,z) over k is not equal to 1.  One can make any counterexample for showing the 

violation of closure condition.   

In a different form of combination model, the pk(x,y,z) can be approximated as following: 
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In this form, the 3D proportion is estimated from the multiplication of areal and vertical proportion 

standardized by global proportion.  This approximation also adopts an independence assumption 

between 2D and 1D proportions conditioned to the estimated 3D proportion.  C is an unknown 

normalizing term.  By enforcing the closure condition on the equation (3), the C term is: 
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and insert the C term into equation (3) then: 
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If binary facies (K=2) is of interest, the equation (5) is exactly same as the PR-model in the equation (2).  

The equation (5) is valid regardless of the number of facies and thus it can be regarded as a general form 

of combination model. 

 One interesting aspect of the combination equation (5) is that the combined proportion depends 

on the ratio of areal and vertical proportion to the global proportion.  If two modeled proportions pk(x,y) 
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and pk(z) are large relative to the global proportion pk, then the ratio pk(x,y)/pk and pk(z)/pk will be greater 

than 1 and consequently the multiplication of two ratios (these ratios are greater than 1) produces much 

larger value.  The resulting proportion pk(x,y,z) will be larger than the used proportion pk(x,y), pk(z) and pk.  

Similarly, if two ratios become less than 1 then the multiplication of ratios (ratios being less than 1) 

produce much smaller value.  This property falling outside the input values is termed as non-convexity.  

This appearance is natural in probability combination approach using equation (2) or equation (5): 

 
In case that one tries to build the full trend in 3D through combining lower order trends, one should 

notice that: 

 (1)  The modeled 3D trend is smooth in distribution 

 (2)  The modeled 3D trend reasonably reproduces the used lower order trends, pk(x,y), pk(z) and 

global proportion pk  

 (3)  Closure condition of pk(x,y,z) over k=1,…,K should be met 

Normalizing enforces the closure condition and the third comment is satisfied.  Under non-convex 

property, the first and second expectations may be violated.   

As a way of reducing the possibility of falling outside the input proportion, a weighted combination 

approach is advanced: 
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where w1 and w2 are weights imposed on each proportion ratio.  The weighted model reverts to the 

conditional independence model with letting w1=w2=1.  The proportion ratio has a minimum bound of 0, 

but theoretically it has no maximum bound.  The normalizing term C is disappeared by enforcing the 

closure condition (
1
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=∑ ).  The figure-1 below shows how the proportion ratio (denoted as 

X in the figure) changes according to the change of weight.  By imposing weights lying within [0,1], the 

ratio is decreased if it is larger than 1, and the ratio is increased if it is smaller than 1.  In other words, 

proportion ratio is limited when they tend to be extreme.   

  
Figure-1: An illustration of how the proportion ratio change according to weight in [0,1].  As smaller 

weights are used, the weighted proportion ratio is bounded in shorter range.  The curves pass at (1,1) 
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regardless of weight values in which case areal and vertical proportion are all equal to the global 

proportion and the combined proportion reverts to the global proportion. 

 In a weighted combination approach, we can prevent the multiplication of proportion ratios, 

finally the combined proportion, from being too high or too small, and consequently, it may lead to better 

reproduction of input trends.  Weights w1 and w2 have a different effect in the calculation of combined 

proportion.  w1 adjusts the influence of the areal proportion (precisely ratio of areal proportion to the 

global proportion).  As smaller w1 is used, vertical proportion becomes relatively influential.  w2 adjusts 

the influence of the vertical proportion (precisely ratio of vertical proportion to the global proportion).  

The areal proportion becomes relatively influential as smaller w2 is used.  For instances, if w1=0 and w2=1 

in the equation (6) then the resulting 3D proportion is completely dependent on the vertical proportion in 

which case the input vertical trend is perfectly reproduced and areal trend is poorly reproduced.  

Conversely, if w1=1 and w2=0 then the resulting 3D proportion is completely dependent on the areal 

proportion in which case the input vertical trend is poorly reproduced and areal trend is perfectly 

reproduced.  It is difficult to obtain the 3D trend model simultaneously honoring the input areal and 

vertical trends.  One may observe a severe bias in the reproduced vertical proportion when areal 

proportion is more emphasized (using small w2), and severe bias in the reproduced areal proportion when 

vertical proportion is more emphasized (using small w1).   

 Universal weights w1 and w2 over entire locations might be undesirable.  As the proportion ratios 

pk(x,y)/pk and pk(z)/pk are different at locations, different weights can be considered.  To find appropriate 

weights, weighting curve depending on the proportion ratios is used.  Figure-2 shows a smooth Gaussian 

weigh curve.  As the proportion ratio (denoted as X in the figure) is far way from 1, weights become 

smaller and it has an effect of diminishing the input proportion ratio.  The related program gives an option 

to choose the slope of the weight curve (denoted as wf in the figure-3).  Large wf in the figure-3 makes 

steep weight curve and it causes strong weighting effect.  Similarly, small wf makes gentle weight curve 

and it causes weak strong weighting effect.  No weighting effect happens when wf=0 which is a 

conditional independence combination model. 

 
Figure-2: A smoothed weight curve is function of the proportion ratios denoted as X. 

 
Figure-3: Various weight curves depending on the coefficient (wf) inside the exponential function.  Large 

wf makes steep weight curve and it results in a strong effect of weighing. 
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It must be noted that the considered multiplicative form shown in equation (5) and (6) is dominated by a 

zero proportion from either pk(x,y)=0 or pk(z)=0 or both pk(x,y)= pk(z)=0.  For example, when areal 

proportion at a particular location pk(x,y) is zero, the combined proportion pk(x,y,z) becomes zero 

regardless of pk(z) and weights.  This dictatorship is a drawback of the multiplicative form and thus areal 

and vertical trends should be carefully modeled with possibly non-zero proportions (McConway, 1981; 

Benediktsson et al., 1992). 

 

Program Description and Examples 

The program pcsTM.exe (pcsTM: probability combination schemes for Trend Modeling) implements the 

combination of areal and vertical proportions into building 3D proportion model with some options in 

combination method.  Figure-4 is a screen capture of the parameter file.   

  
 Figure-4: A screen capture of the parameter file 

 

2D areal and 1D vertical proportion files are required input files in the program.  Areal trend file contains 

only proportion values corresponding to the facies k=1,…,K not including x,y,z coordinate.  The first 

column of the vertical proportion file represents a relative Z coordinate that is a transformed coordinate 

after stratigraphic layer flattening (Deutsch, 2002).  Vertical proportions of each facies are followed by 

vertical coordinate.  Number of grids in x,y,z direction are defined in line 3.  Number of facies and global 

proportions are defined in line 4 and 5.  Line 6 specifies the slopes of weight curve for the calculation of 

weight.  Real positive values should be used.  First and second values in line 6 specify the slope of weight 

curve applied to the areal and vertical proportion, respectively.  Weighted combination model becomes 

independence model when line 6 has zeros.  Line 7 is for overall raise or lowering the obtained 3D trend 

model.  Despite of limiting the proportion ratios by weights, the reproduced proportions may not match 

the input proportions; they can be still departed from the input trends.  Line 7 is an additional option to 

better match the input trends through overall shifting the obtained pk(x,y,z) by multiplying factors defined 

in the line 7.  Number of these factors should be same number of facies.  Notice that factor values far 

away from 1 distort the reproduced global proportion. 

 A test data is prepared as shown in the figure-5.  Reservoir extends over 50m×50m×30m 

separated by 1m for x,y,z direction.  The areal and vertical trends are modeled with 13 wells: vertically 

averaged proportions from 30 samples at each well are used for 2D trend modeling, and horizontally 

averaged proportions from 13 wells at each rel-Z coordinate are used for 1D trend modeling.  1D and 2D 

trend modeling was performed for each three facies.  Figure-5 demonstrates well location map, modeled 

areal and vertical trend.  Averaged facies proportions from each 2D and 1D trend are close to the global 

proportions.  Vertical solid line shown on the VPC represents global proportion of each facies.  

 Given the areal and vertical trend, full trend model in 3D is conducted with the described 

program.  Conditional independence model was first tested by letting the line 6 as 0 in the parameter file.  

Figure-6 shows the reproduced areal trend from the modeled 3D trend.  Locations of high and low 

proportion in the input areal trend map still have high and low proportion in the reproduced map, 

respectively.  Proportion value itself; however, seems to be systematically biased.  Reproduced 

proportions tend to be unfairly too high and too low.  This appearance is less prominent in facies 3 

because the combined proportions are affected not only by areal proportions but also vertical proportions 

  Parameter file for PCSTM

line 1:  2Dtrend.out  -2D areal trend

line 2:  VPC.out   -1D vertical trend

line 3:  50 50 30   -nx,ny,nz

line 4:  3    -Number of facies

line 5:  0.1 0.4 0.5  -Global proportions

line 6:  0.8 0.8   -slope for weight curve

line 7:  1.0  1.0  1.0     -overall modification factor 

line 8:  3Dtrend.out  -3D trend output file
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and less variable vertical trend of facies 3 (almost constant pk(z) over rel-Z coordinate as shown in the 

figure-5) may mitigate the phenomenon.  Figure-7 illustrates more details at a particular location marked 

as star in the areal trend map.  Areal proportion at marked location and vertical proportion curve are 

standardized by global proportions; input VPC, standardized VPC and multiplied curves (not normalizing 

yet) are shown at each row.  Since the multiplied curve of facies 1 has larger value than other curves of 

facies 2 and 3, the combined proportion of facies 1 becomes higher and thus vertical average of them is 

also high at the specified location.   

 Figure-8 shows the cross plots of the input trends versus reproduced trends from the modeled 

3D trend.  Reproduced areal and vertical trends of facies 1 are higher than the input ones.  This is because 

large amounts (72%) of nx×ny×nz grids have larger areal and vertical proportions than the global 

proportion, and consequently, those locations have very high proportion of facies 1.  Reproduced trends 

of facies 2 and 3 are lower than the input ones because 77% of total grids have smaller areal and vertical 

proportions than the global proportion.   

 Depicting the results from simple combination model provides that the combined proportions 

are systematically higher or lower than the input proportion.  Limiting the upper and lower proportions 

could mitigate the systematic departures.  The following parameters are defined for a weighted 

combination.   

 
 Setting line 6 as 1 represents that areal and vertical proportions use same weight curve with 

moderate slope.  Overall modification factors in line 7 are defined to more closely match the input trends 

by overall shifting the obtained 3D proportions.  Figure-9 shows cross plots of input versus reproduced 2D 

and 1D proportions.  Due to applying weights, the combined proportions do not extend into very high or 

low proportions.  Table below summarizes the reproduced global proportions. 

 Facies 1 Facies 2 Facies 3 

Reproduced 0.21 0.46 0.34 

Input 0.28 0.42 0.31 

Another example with real data is demonstrated through figure-10~figure-12.  Reservoir extends over 

1600m×1600m×23m separated by 1m for all directions. 39 wells are drilled over the reservoir.  For three 

facies, areal and vertical trends are modeled.  Different combination methods are tested and results are 

evaluated in terms of reasonable reproduction of lower order trends.  Independence combination model 

causes departures from the input trends.  Parameters were defined for a weighted combination: 

  
Cross plots of input and reproduced proportions are shown in the figure-13.  Reproduced global 

proportions using weighted combination are summarized in the table below.   

 Facies 1 Facies 2 Facies 3 

Reproduced 0.484 0.272 0.244 

Input 0.437 0.269 0.293 

 

Continuous Variable 

In case of trend modeling of continuous variable, similar approach has been considered.  For building 3D 

trend m(x,y,z), the lower order trends and global mean, m(x,y), m(z) and m, are combined by the following 

equation: 
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m x y m z
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Similar to the categorical variable modeling, the above equation may result in unfairly very high or very 

low 3D trend, and consequently, the modeled trend in 3D does not reasonably honor the input trends.  

The described program was applied to the building 3D trend of continuous variable.  Figure-13 shows 

areal and vertical trend used to combine.  Simple independence model was first applied and top cross 

plots in the figure-14 shows the comparison of input and reproduced trends from the modeled 3D trend.  

line 6:  1.0  1.0  -slope for weight curve

line 7:  0.8  1.15  1.15   -overall modification factor 

line 6:  0.3  0.3  -slope for weight curve

line 7:  1.3  1.0  0.7     -overall modification factor 



Paper 130, CCG Annual Report 11, 2009 (© 2009) 

 130-7 

Reproduced trends are systematically higher than the input trends for both 2D and 1D.  Weighted 

combination with overall lowering by 7% reasonably matches the input trends (see bottom cross plots in 

the figure-14).  Global means are compared in the table below.  Numbers in the parenthesis is difference 

in % based on the input mean. 

Reproduced from 

independence model 

Reproduced from weighted 

model 
Input 

3.12 (+4%) 2.88 (-4%) 3.0 

 

Conclusions 

Large scale feature of reservoir properties is important and it should be accounted for in the final 

reservoir model.  A typical way of modeling full 3D trend is to combine 2D areal trend and 1D vertical 

trend that are individually modeled and possibly using different data sources such as well data for vertical 

trend and seismic map for areal trend.  Probability combination scheme is a basis for building higher order 

trend by combining lower order trends.  Conventional combination method with independence 

assumption causes unfairly very high or very low trend values, which makes it difficult not only to 

reproduce the input information but also to preserve the smoothness in the modeled 3D trend.  In this 

work weighted combination method is advanced.  The method changes the influence of the elementary 

lower order trends by introducing exponential weights and consequently it adjusts the combined 3D trend 

not to be very high or very low.  The related program is implemented with several options: independence 

or weighted combination.  User can choose the slope of weight curve in the weighted combination 

option.  Examples are tested with the program and results are evaluated in terms of reasonable 

reproduction of input information and preservation of smoothness in the final 3D trend.   

 In the demonstrated examples, weighted combination method shows better performance than 

the simple method with independence assumption.  Simple combination approach; however, could be 

better in a certain case such that trends in areal and vertical direction are not significant.  Several 

attempts are good practice to find the appropriate 3D trend model by applying from simple to weighted 

combination ways depending on the problem at hand 
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Figure-5: A synthetic test data for 3D trend modeling.  Areal and vertical trends are modeled with 13 well 

samples for three facies.  Global proportions are represented by a solid line on the VPC plot.  Averages of 

2D and 1D proportions are close to the global proportion. 
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Figure-6: The comparison of the input areal trend and reproduced areal trend from the modeled 3D 

trend.  For building 3D trend, conventional method with independence assumption was used. 

 

 

 

Input 2D trend

Facies 1 Facies 1

Facie 2 Facies 2

Facies 3 Facies 3

0.0

1.0

Reproduced areal trend



Paper 130, CCG Annual Report 11, 2009 (© 2009) 

 130-10 

 
Figure-7:  Detailed illustration about combing 2D and 1D trend at a particular location. 
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Figure-8: Cross plots of input and reproduced proportions from the modeled 3D trend using 

independence assumption. 

 

 

 
Figure-9:  Cross plots of input and reproduced proportions from a weighted combination model. 
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Figure-10:  Another real example for test.  Three facies are identified over the area, and areal and vertical 

trends for three facies are modeled. 
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Figure-11:  Cross plots of input and reproduced proportions from the 3D trend using independence 

assumption. 

 

 

 

 
Figure-12: Cross plots of input and reproduced proportions from the 3D trend using a weighted 

combination model. 
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Figure-13:  Areal and vertical trend for the continuous variable 

 

 
Figure-14:  Evaluation of the reproduced lower order trends for the continuous variable. 
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