
Paper 131, CCG Annual Report 11, 2009 (© 2009) 

 131-1 

Evaluation of Probabilistic Models for Categorical Variables 

Sahyun Hong and Clayton V. Deutsch 

 

Evaluation procedures are essential when justifying the reasonableness of the used probabilistic model or 

model parameters.  Although there is no way to attain complete objective criteria, some important 

measures are described for the purpose of checking a categorical variable model.  Checking the 

reproduced global mean is first.  Closeness measures how close estimated probabilities are to true value.  

Checking the fairness of estimated probabilities is performed when first two criteria are met.  Closeness 

and fairness measures are both related to the distribution shape of estimated probabilities and their 

behavior is depicted by changing the probability distributions. 

 

Introduction 

It is impossible to fully validate a model when applied to unknown true values and thus a model can be 

partially evaluated with actual observation (Oreskes et al, 1994).  Although a model is checked and has a 

high agreement with observations, the estimated values or probabilities are always uncertain because a 

model may be too simplistic and data we have at hand contain errors.  Nevertheless, constructed model is 

evaluated based on some objectivity.  There is no way to attain complete objectivity, but there are some 

related considerations that are important. 

 Leuangthong et al (2004) reviewed minimum acceptance criteria for continuous variable model.  

The discrete nature of categorical variables and the lack of an ordering require different cross validation 

techniques than continuous variables (Deutsch, 2002).  The prediction of categorical variable may be 

checked by (1) reasonable reproduction of input global proportions, (2) high correlation between true 

facies and estimated probability of true facies, (3) and fairness of the estimated probabilities.  In addition 

to these basic criteria, reproduced variograms from multiple realizations should be checked with input 

variogram in a simulation setting.  Large scaled facies proportion modeling or secondary data integration; 

however, do not have multiple realization of facies.  They will be anchored into the hard data in a 

simulation mode for generating facies realizations.  Before using them in simulation, the modeled 

proportion trends or secondary derived probability estimates should be assessed because invalid results 

can make wrong final geostatistical models.  

 

Global Proportions 

A quick way of validating the probabilistic model is to check the reproduction of global proportions.  A 

declustering or debiasing must be considered if necessary in order to obtain representative proportions 

and these are compared with the reproduced ones from models.  Reproduced global proportions are 

arithmetic average of the estimated probabilities of facies k at sample locations uα, α=1,…,n: 
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The reproduced proportions usually do not exactly honor the input proportion; however, large departures 

indicate that the considered probabilistic model had better be revisited.   

 Although global proportions are well reproduced, one should check the distribution shape of 

p
*
(uα;k) as well since the uncertainty is more related to the probability distributions.  Figure-1 shows some 

examples of distributions of p
*
(uα;k).  Representative global proportion of facies k is assumed to be 0.3.  

Averages of three different probability distributions p
*
(uα;k) are all 0.3.  Three cases may be equally 

acceptable in terms of good reproduction of global proportions.  Further checks based on the probability 

distributions should be performed. 

 

Closeness to True Facies 

In addition to checking the global proportion reproduction, we should evaluate that how close the local 

estimated probabilities are to the true facies.  There is no doubt that the predicted probabilities of facies k 

should be high at true facies k, and should be low at facies not k.  Deutsch (1999) proposed a measure for 

this purpose termed as closeness: 
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whereby p
*
(uα;k) are estimated probabilities of facies k=1,…,K at well locations uα, α=1,…,n.  This measure 

can be interpreted as local accuracy of estimated probabilities.  Because the calculated Ck is an average of 

probabilities, it varies from 0 to 1 theoretically.  The case of Ck = 0 represents the results completely 

contradict to the true values.  This case; however, rarely happens since it is better to take a global 

proportions as a local estimate when Ck=0.  The worst case is then Ck = pk.  The closeness measure will 

have the following bounds: 

 1
k k

p C≤ ≤  (3) 

As Ck gets close to 1, the estimated local probabilities of true facies become close to 1 and the 

probabilistic model under consideration would be regarded as of being accurate.  Recall three cases 

shown in the figure-1.  Probability distributions are separated based on the true facies from samples and 

they are shown in the figure-2.  For examples, top row in the figure-2 represents the distributions of 

probability p
*
(uα;k) from samples of true facies k, and middle row represents the distributions of 

probability p
*
(uα;k) from samples of true facies not k.  Bottom row represents the distribution of p

*
(uα;k) 

from all samples.  Sum of two distributions shown in the top and middle amounts to the distributions in 

the bottom row.  Distribution shapes located in the top and middle row are examples; thus, any shape of 

distribution is possible as long as their sum amounts to the distribution in the bottom.  By the definition of 

closeness in equation (2), Ck is a mean of the probability distribution shown in the top row of the figure-2.  

The figure-2 gives an idea that that closeness measure becomes higher (moves to the right) when the 

extracted probabilities are toward to 1 leading to the bimodal shape of overall probability distribution as 

shown in the bottom.  Due to good reproduction of global proportion and high closeness, the case (c) 

would be considered as a good model. 

 There is a classical measure of accuracy that assigns the most likely facies with a maximum 

probability and then count the actual and predicted pixel number.  Confusion matrix summarizes these 

results (Johnson and Wichern, 2002): 

 Predicted pixel number 

Actual pixel 

number 

 Facies 1 Facies 2 

Facies 1 n11 n12 

Facies 2 n21 n22 

For example, n11 is number of pixels correctly classified as facies 1 and n21 is number of pixels 

misclassified.  Classification accuracy of facies 1 is then calculated by n11/(n11+n12).  This simple evaluation 

method does not consider the uncertainty or probabilities.  Figure-3 illustrates drawback of accuracy 

calculation using the classical confusion matrix.  Small 4 grid example is shown for illustration.  

Probabilities around 0.5 are assigned at each grid which introduces high uncertainty when assigning facies 

1 or 2 with the largest probability.  Classification accuracy is calculated as 0% for both facies.  Based on 0% 

classification accuracy, it might be concluded that the secondary data is useless when one wants to use 

them for identifying facies or the considered probabilistic model is completely invalid.  The classical 

accuracy does not account for the high degree of uncertainty indicated by the estimated probability just 

below and above 0.5. 

 

Fairness 

The closeness is an indication of how the locally estimated probabilities close to the true value.  It is worth 

to evaluate the relative accuracy between facies being assessed and facies not being assessed.  The locally 

estimated probabilities can be said to be “fair” if they reflect the true fraction of times the predicted 

facies occurs (Deutsch, 2002).  For example, consider all locations where we predict 0.3 probability of 

sand then most fair case is that 30% of those locations are sand.  Below or above from this 30% may be a 

problem in terms of fairness.  Fairness check is conducted by comparing the actual fractions and predicted 

p.  In its general form, the fraction is computed at a given predicted probability p by: 
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where p*(uα;k) are estimated probabilities at sample location uα, α=1,…,n.  p is a predicted probability.  

Indicator function I(⋅) takes either 0 or 1 depending on facies type k what we want to evaluate.  Actual 

fraction at p is an average of indicator value under the predicted p.  This actual fraction is calculated at 

every p values and then plotted against p.  Figure-4 shows a schematic illustration of how to calculate the 

actual fraction at a given predicted p.  Identify what facies is to be evaluated and build the distribution of 

probabilities p
*
(uα;k) extracted from samples of true facies k (identify them as code 1) and from samples 

of true facies not k (identify them as code 0).  In figure-4, densely and sparsely dashed lines represent 

each extracted probability distribution and they are negatively and positively skewed with varying degree 

of skewness, respectively.  At every p value averaging indicators described in equation (4) is equivalent to 

calculating the ratios of frequencies (f1(p)) from densely dashed line to the summed frequencies from 

densely and sparsely dashed lines (f1(p)+f0(p)).  These ratios are computed at every specified p and plotted 

against p.  Plotting the actual fractions versus predicted probability allows us to check fairness in one plot 

as shown in the right of figure-4.  The proximity of the dots to the 45 degree line attests to the fairness of 

the local estimated probabilities.   

 Drawn distributions shown in the figure-4 are examples and fairness plot based on that 

distributions looks acceptable.  Pattern of fairness plot depends on the distribution of estimated 

probabilities.  Figure-5 demonstrates various pattern of fairness plots derived from different probability 

distributions.  Artificial probability distribution funcitons are smoothly generated and actual fractions are 

calculated using these distributions at every 0.01 predicted probabilities that are shown as smooth curve 

in the right column of the figure-5.  Top first and second cases have high estimated probabilities about 

true facies (negatively skewed) and their fairness plots are more or less resemble 45 degree line.  Among 

two cases, first case has higher closeness than the second case; however, second case is more fair than 

the first case.  Third case has uniform distribution of estimated probabilities that is little or no informative 

for recognizing true facies.  The last in the figure-5 shows the case of highly contradictory to true facies 

and perhaps this case has very low closeness measure.  Fairness plot is highly departed from ideal line. 

 The closeness can be described on the probability distribution plots: it is a mean of the 

probability distribution of code 1 in figure-5.  The top case has the highest closeness and it may be 

concluded as the best model in terms of closeness measure.  Fairness plot; however, looks departed from 

the ideal plot shown as thick gray line.  In the second case, closeness is slightly shifted to the left because 

of relatively long tail of probability distribution and fairness plot becomes close to the diagonal line.  

Fairness check is aimed at evaluating whether or not the estimated probabilities unfairly tend to be 

extreme, very close to either 0 or 1 in which case the probabilistic model is regarded as too optimistic.  

 Fairness plot examples with real data are shown in Figure 6.  Large scaled binary facies 

proportion maps are generated using moving window method.  Size of moving window is set differently, 

e.g. 10%, 30% and 60% of domain size, which makes three different proportion maps and probability 

distributions.  Bar charts in the left column represent the distribution of extracted probabilities and 

plotted dots in the right column represent the calculated actual fractions from each case of probability 

distributions.  The first case is the most accurate case by closeness measure (Ck=1=0.9), for the 

probabilities are highly concentrated on either 0 or 1.  Fairness calculation shows either 0% or 100% 

actual fractions for this case.  There are no proportions from the probability distributions when predicted 

p is between 0.4 and 0.6.  Actual fractions; thus, cannot be calculated for that range (shown as unfilled 

circle).  It does not show close inclination to the 45 degree line despite of the highest closeness among 

three cases.  The second is a moderately accurate case (Ck=1=0.81).  The probability distributions are 

skewed to either 0 or 1, but they have non-zero frequencies over entire probability ranges leading to a 

long tail.  Its fairness plot more tends to be diagonal than the first case.  The third example is that the 

estimated probabilities are almost evenly distributed.  Closeness measure becomes smaller than other 

two cases and fairness plot looks erratic.  

 

Closeness and Fairness 

Defined closeness and fairness are affected by the distribution of estimated probabilities.  The former is 

to evaluate the absolute accuracy of local estimated probabilities and it is maximized when distribution 
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shape of the estimated probabilities tends to be bimodal.  The latter is aimed at assessing whether or not 

estimated probabilities are overly confident.  The highest closeness does not always indicate the most fair 

model.  When the closeness is emphasized too much the fairness would be impaired.   

 

Discussions 

It is impossible to comprehensively validate a model with true values because true values are limitedly 

known.  Instead, we can validate the robustness and consistency of models themselves.  For this, some 

objective criteria for categorical variable model are described: reproduction of global proportion, 

closeness to true value, and fairness of the estimated probabilities.  Checking the reproduced global 

proportions is a first step.  Checking the closeness becomes a priority before evaluating the fairness.  The 

model may be revisited if closeness is far less than the minimum, that is global proportions.  Once the 

measured closeness is reasonably acceptable then the fairness check would be performed further for 

model validation.  Trying to increase closeness makes the estimated probabilities be too close to 0 or 1 

(overly confident) resulting in an impair of fairness.  Preserving the fairness precludes a model being too 

optimistic and it could drop closeness measure.  To conclude more fair model will be selected unless the 

closeness is significantly dropped. 
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Figure-1:  Three different distributions of the estimated probabilities p
*
(uα;k).  Averages of these 

distributions are all 0.3 that exactly reproduces the input global proportion. 
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Figure-2: Probability distributions shown in the figure-1 are separated based on samples of true facies: 

distributions of the estimated probabilities p
*
(uα;k) using samples of facies k (top), samples of facies not k 

(middle) and all samples (bottom).   

 

Figure-3: An example of accuracy measurement using traditional confusion matrix.  Accuracy is calculated 

based on the fraction of pixels assigned to true values and it cannot quantify the uncertainty indicated by 

the estimated probability. 

 

 

Figure-4: A schematic illustration of drawing the fairness plot.  Based on distributions of estimated 

probabilities (left), ratios of these distributions are calculated at a given probability interval p and they are 

plotted against the considered p (right). 
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Figure-5: Various fairness plots based on the different probability distributions.  Top first and second are 

acceptable cases and third and last are problematic cases.  Among first two cases, closeness is high in the 

first case, but the second case is more fair. 

 
Figure-6:  Fairness plots with test examples. 
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