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Multivariate Multiscale Categorical Variable Distributions 
 

S. H. Derakhshan and Clayton V. Deutsch 

 

Facies have a significant impact on reservoir flow performance.  In geostatistics, facies are treated as 

categorical variables.  They are considered to be mutually exclusive at a small scale and become 

proportions at larger scales.  In the case of facies simulation with coarse grids this assumption may not be 

valid; mixing of facies inevitably occurs at larger scales.  Assessing the uncertainty of facies proportions at 

a specific scale honoring the sum to unity is a challenging problem.  This paper introduces the basic need 

for multiscale multivariate facies distributions.  The analytical form of the univariate marginal distributions 

of the multivariate multiscale facies proportion distribution in truncated Gaussian simulation framework 

(TGSIM) has also been investigated. 

 

Introduction 

A random variable is a variable, � , that can take a series of outcomes or realizations ��� , � = 1, … , �� with 

a given set of probabilities of occurrence �
� , � = 1, … , ��. The probabilities are all greater than or equal to 

zero and must sum to one. When the number � of occurrences is finite, the random variable is discrete (or 

categorical). If � is infinite the random variable is continuous. The probability distribution of a continuous 

random variable ����� is characterized by its cumulative distribution function defined as: ����; �� = ���������� ≤ ��  ∈  �0,1�   ;  � = 1, … , � ����; �� is called the univariate cumulative distribution function. 

 A random function is defined as a set of usually dependent random variables ����� (�� , � =1, … , � , is the vector of location). The random function can be written as  ������, � = 1, … , � �, where � 

is the number of locations or random variables under consideration. The � random variables of the 

random function form an � −variate cumulative distribution function defined as: � !��", … , �#; �", … , �#� = ��������"� ≤ �", … , ���#� ≤ �#� $% stands for multivariate. For categorical variables the multivariate probability density function 

representation is more relevant (Deutsch 2002) and can be written as: 
 !��", … , �#; &", … , &#� = ��������"� ∈ &", … , ���#� ∈ &#�  ; &�  = 1, … , ' & � = 1, … , � 

There are ' mutually exclusive facies categories ordered as & = 1, … , '. &� is the facies code 

corresponding to location ��. Once the � −variate probability distribution function is formed, all of the 

multivariate marginal (with the number of variables less than �) probability density functions can be 

obtained. 

 

Categorical Variables and Compositional Property 

Continuous variables have a natural ranking and are amenable to basic arithmetic (add, subtract, multiply, 

divide, etc) (Chiles, J. P. and Delfiner, P., 1999). For example, porosity is a continuous variable because it 

can take any numeric values between 0 and 1. Categorical variables are discrete variables representing 

elements of classification. In general, we cannot do arithmetic on categorical variables because their 

values act as labels rather than numbers. 

 Facies are categorical and assigned by a geologist or petrophysicist using the analysis of cores 

and available data. In the absence of core measurements, well log data are used to assign facies. Two 

important assumptions are made in assigning the facies data. These assumptions are the basis for all 

current facies simulation techniques. The assumptions are (1) mutual exclusivity and (2) exhaustivity. 

Consider ' mutually exclusive and exhaustive facies categories & = 1, … , '. 

 The facies are called mutual exclusive and exhaustive because it is assumed that any 

location �� , � = 1, … , �, in the reservoir belongs to one and only one of these ' categories. If facies & 

exists at location �� then other facies do not exist at �� on the other hand if facies & does not exist at 

location �� then there must exist only one facies, e.g. &), other than & at location ��. The existence and 

non-existence of facies & at location �� can be coded as 0 (non-existence) or 1 (existence). Let ����; &� be 

the indicator variable corresponding to category & at location ��. Therefore, 
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����; &� = *1,    �+ ,�-./��0 �� �0 -./12��3 &0,    �/ℎ1�5�61    ; & = 1, … , ' & � = 1, … , �7 
In mathematical form the two assumptions of mutual exclusivity and exhaustivity are: ����; &�. ����; &′� = 0  ;    ∀ & ≠ &) &  &, &) = 1, … , '  &  � = 1, … , � 

< ����; &�=
>?" = 1 ;   � = 1, … , � 

At each location, the indicator variable is 0 or 1 at a point scale. As the scale increases ����; &� becomes a 

proportion, 
> , & = 1, … , ', with values between 0 and 1.   

 To calculate the proportion of facies & ( 
> , & = 1, … , '), first a neighborhood or scale of location �� , � = 1, … , � should be defined then the volumetric averaging of ����; &� will be performed, therefore: 


> = 1% @ ����; &�. AB!   ; & = 1, … , ' & � = 1, … , � 

The facies variable changes from categorical to continuous as the scale increases. At point scale (% = 0), 

the value of 
>  is 0 or 1. At very large scale (% is the entire reservoir) the value of 
>  is the global 

proportion of facies &. Figure 1 shows a schematic plot of the impact of scale on facies probability 

distribution function. 

 
Figure 1 univariate bimodal and unimodal facies distribution at point scale and large scale respectively 

 

The univariate distribution for each indicator variable changes from a bimodal distribution of ones and 

zeros at point support to the unimodal (global average) at large support. Figure 2 shows the distribution 

of facies proportions at different scales. 

 Haas et al (2002), Biver et al (2002) and Deutsch et al (2008) proposed analytical techniques to 

model the probability density function of categorical independent variables at different scales. They 

started with multinomial distribution of facies. It can be proved mathematically that if the variables are 

independent binary (0 and 1) categorical variables and are upscaled to a larger support, the probability 

density function becomes binomial. As a generalization for multiple categories the probability density 

function becomes multinomial but it should be noted that this law is correct for independent variables 

and not for dependent variables.  

 Haas et al (2002) and Deutsch et al (2008) tried to fit some analytical family of distributions such 

as, multinomial distribution, beta distribution, ordinary beta distribution, Dirichlet distribution to 

multivariate multiscale facies distribution. The counting algorithm is used in this paper to find the 

univariate marginals of multivariate multiscale facies distributions. 
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Figure 2 Distribution of facies proportions at different scales 

 

At a specific scale of %, 
>  takes a value from a set of  C0, "! , , … , D! , … , !E"! , 1F with a specific probability 

of 
>,D; & = 1, … , ' & B = 0,1,2, … , %. For example if the upscaled value is calculated using eight point 

scale locations (e.g. upscaled grid dimensions % = 2 × 2 × 2) 
>  can take any numbers from the set of C0, "I , JI , KI , LI , MI , NI , OI , 1F with probability of 
>,D . 
>,D is the univariate marginal distribution of facies & at 

scale B. The purpose of this paper is to calculate 
>,D analytically. 

 The constraint of sum to unity is preserved at all scales, that is, at each location and at all scales 

the sum of the facies proportions is 1. If we plot all of the facies proportions in a ' dimensional space, all 

of the points fall on a hyperplane or more specifically a standard or unit �' − 1� − simplex. For example 

consider a three dimensional facies model that contains two facies. Each grid cell has two values for the 

proportion of facies 1 and 2 (regardless of scale). A plot of the proportions of facies 1 versus the 

proportions of facies 2 will fall on a line. The set of plotted proportion points is a unit 1-simplex with the 

equation of 
" + 
J = 1 (with vertices of (1, 0) and (0, 1)) or if we have three facies, the set of plotted 
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proportion points is an equilateral triangle plane or a unit 2-simplex with the equation of 
" + 
J + 
K =1 (with vertices of (1, 0,0), (0, 1,0) and (0, 0,1)). 

 Figure 3 shows a typical 2-simplex (an equilateral triangle in three dimensional space). Each 

point on the unit �' − 1� − simplex corresponds to a location in reservoir model. For example in the case 

of three facies of sand, shaley-sand and shale; a grid block that contains 20 % sand, 50 % shaley-sand and 

30 % shale sand can be shown as (0.2,0.5,0.2). This point will fall on the unit 2-simplex.  

The standard or unit �' − 1� − simplex can be written as below (Aitchison, 1986): 

Δ=E" = Q7�
", … , 
=� ∈ ℝ=| < 
>
=

>?" = 1  .0A  
> ≥ 0 +�� .,, &U 

Note that the above definition for unit �' − 1� − simplex satisfies the condition of 
> ≤ 1. The matrix of 

vertices of unit �' − 1� − simplex is a unit matrix: 

V=×= =
WXX
XXX
Y1 0 0 ⋯ 0 ⋯ 00 1 0 ⋯ 0 ⋯ 00 0 1 ⋯ 0 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮ ⋯ 00 0 0 ⋯ 1 ⋯ 0⋮ ⋮ ⋮ ⋯ ⋮ ⋱ ⋮0 0 0 ⋯ 0 ⋯ 1]̂̂

^̂̂
_

=×=
 

Each row in above unit matrix is one of the vertices of the unit �' − 1� − simplex. Therefore the ' 

vertices can be written as below: 1" = �1,0,0, … ,0, … ,0�1J = �0,1,0, … ,0, … ,0�1K = �0,0,1, … ,0, … ,0�⋮1> = �0,0,0, … ,1, … ,0�⋮1= = �0,0,0, … ,0, … ,1�
 

The facies proportion points at point scale fall exactly on the vertices of unit �' − 1� − simplex and at 

infinite scale they become a point (global proportion point) on the unit �' − 1� − simplex. 

The facies proportions 
> , & = 1, … , ' form a ' − variate probability distribution function. The total 

number of feasible facies proportion points, `�', %�, from the set of C0, "! , , … , D! , … , !E"! , 1F that fall on 

the Δ=E" is calculated as (Chasalow and Brand 1995): `�', %� = a�% + ' − 1, %� = �% + ' − 1�!%! ∙ �' − 1�!  

 

 
Figure 3 a 2-simplex with three vertices of (1,0,0), (0,1,0) and (0,0,1) 

 

Scaling Law 

Before getting into the scaling law it is needed to recall the definition of the variogram and two important 

assumptions of first and second order stationarity. The variogram is a two-point statistic that spatially 

relates two random variables ��d� and ��d + e�: 
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2f�e� = g����d� − ��d + e��J� 

Where d and e are location and lag vectors, respectively, in domain of study. The assumption of 

stationarity requires that the proposed geostatistical model based on our sampled data, can adequately 

describe the behaviour of the population. The goal is to infer the population based on the sample data. 

So, we should make an informed decision regarding what information we can use to describe the region 

of interest, this is called the decision of stationarity (Kelkar and Perez, 2002). In geostatistical study two 

kinds of stationarities can be defined, they are first order and second order stationarities. The first order 

stationarity is as below: g���d�� = g���d + e�� = h 

Where h is the mean of data. It means that the expected value of a random variable at d is the same as 

the expected value of a random variable e lag distance away. Therefore first order stationarity means that 

the expected value across the region is the same. If we divide the region into small subregions and 

calculate the mean within each subregion then the means should be approximately the same in the case 

of first order stationarity (Kelkar and Perez, 2002). If the mean varies significantly from a subregion to 

another subregion, then there is a trend in the data. One of the most important parts of geostatistical 

modelling is to find the correct trend model if the data show a systematic trend. The trend function can 

be developed by a regression technique, inverse distance weighting and moving window averaging. This 

trend should be removed before variogram modelling and geostatistical simulation. Second order 

stationarity uses the variance at each location, and it assumes that the variance is constant across the 

region. Therefore, %.����d�� = %.����d + e�� = iJ 

By using the first and second order stationarities the relationship between the covariance and variogram 

can be obtained: f�e� = iJ − a�e� 

Where iJis the variance of data, f�e� is the variogram and a�e� is the covariance function.  

The scaling law requires the assumption of stationarities. Journel and Huijbregts (1978) developed a series 

of theoretical concepts and theorems for volume scaling. Given two different volumetric supports B 

and %, there are three important concepts: dispersion variance jJ�B, %�, average variogram fk�B, %� and 

mean covariance ak�B, %� which are defined as (Journel and Huijbregts, 1978): jJ�B, %� = g��hD − h!�J� 

fk�B, %� = 1B. % @ @ f�l − l)�. Al. Al)
!D  

ak�B, %� = 1B. % @ @ a�l − l)�. Al. Al)
!D  

Where hD and h! are average values at the scale B and % respectively. The average values of 

variogram, fk�B, %�, and covariance,  ak�B, %�, are the average values of the point variogram, f�e�, and 

covariance, a�e�, where one extremity of the distance vector e falls in the volume of v and the other 

extremity independently falls in the volume of %. The following results are well known (Journel and 

Huijbregts, 1978): jJ�B, %� = jJ�B, n� − jJ�%, n� iJ�B, %� = ak�B, B� − ak�%, %� = fk�%, %� − fk�B, B� 

In above relations two assumptions are made, they are: (1) iJ�∙,∙� = 0 and (2) fk�n, n� = jJ�∙, n�. “∙” 

denotes the point scale. There are other previous works on scaling law. Isaaks and Srivastava (1989) 

presented the scaling laws with a practical study. Deutsch and Frykman (1999) discuss variogram 

modeling at different scales. 

 

Analytical Form of Univariate Marginals 

Truncated Gaussian simulation (TGSIM) was first introduced by Matheron et al (1987) and then developed 

by Beucher et al (1993) and Xu and Journel (1993). The goal in TGSIM is to generate realizations of a 

continuous Gaussian variable and then truncate them at a series of thresholds to create categorical 

realizations. Suppose that a very fine scale facies model with ' categories (facies) is created using TGSIM 
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and upscaled to a % scale using arithmetic averaging. The upscaled block contains % point scale data. ' 

facies are assigned to these % points. These % points are correlated to each other using the covariance 

matrix, Σ!×!. The proportions of facies & for this upscaled block take values from the set C0, "! , , … , D! , … , !E"! , 1F with the probability mass function of 
>,D.  

 The univariate marginals, 
>,D, can be calculated using the combinatorial and counting 

techniques because of the discrete behavior of facies codes. The univariate marginal distribution of facies & for the upscaled block which contains % points is written and summarized as below: 


>,D = < o�B>�p�, B�. 
�p�=q
r?"  ;   & = 1, … , '  &  B = 0,1, … , % 

In Microsoft Excel 2007 the function for 
>,D can be written as below: 

s
>,D = `t$u���.021, -��/1��., �6vh_�.021���.021 = B"�p�, … , B=�p�-��/1��. = 0�6vh_�.021� = 
�1�, … , 
�'!� 7 
Where 
�p� is the integral below the % − variate Gaussian distribution of point scale locations for the 

probability class index p and can be calculated as below: 
�p� = @ … @ … @ 2x�y", … , yD , … , y!�. Ay" … AyD … Ay!z{,|}�~�
z{,|}�~��}

z{,|��~�
z{,|��~��}

z{,|q�~�
�|,|q�~��}  

o�B>�p�, B� is the Dirac delta function with the value of 0 or 1 based on the below definition: o�B>�p�, B� = *1    ;   �+ B>�p� = B0    ;   �+ B>�p� ≠ B7   ;   B = 0,1, … , % B>�p� is the total number of facies & which make the probability class index  p : 

B>�p� = < o�&D�p�, &�!
D?"  

Again o�&D�p�, &� is the Dirac delta function with value of 0 or 1 based on the following definition: o�&D�p�, &� = *1    ;   �+ &D�p� = &0    ;   �+ &D�p� ≠ &    ;   & = 1, … , '7 
In Microsoft Excel 2007 the function for B>�p� can be written as below: 

QB>�p�  = a�t��u���.021, -��/1��.��.021 = &"�p�, … , &!�p�-��/1��. = & 7 
&D�p� is the Bth index of the probability class index  p and can be written as: 

p = 1 + <�&D�p� − 1�. 'DE"!
D?"    ⇄     &D�p� = 1 + �0/ �p − 1'DE"� − '. �0/ �p − 1'D � 

The % − variate Gaussian distribution of point scale locations is defined as: 2x�y", … , y!� = 1��2��! . |Σ| . 1y
 �− 12 ���� . ΣE". ���� 

� =
WXX
XY y"yJ⋮y!E"y! ]̂̂

_̂
#×#

 and Σ =
WX
XX
Y 1 �",J … �",!E" �",!�J," 1 … �J,!E" �J,!⋮ ⋮ ⋱ ⋮ ⋮�!E"," �!E",J … 1 �#E",!�!," �!,J … �!,!E" 1 ]̂

^̂
_

!×!
 and Σ is symmetric. 

 

Example 

Suppose that we have three facies categories and the number of point scale values is two (scale), 

therefore ' = 3, % = 2 . The 3Jdifferent probability classes are shown in Figure 4. 
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Figure 4 Nine different probability classes in the case of three facies and two point scale facies model 

 

Below table shows the formulas for the univariate marginals of multivariate multiscale facies proportions, 
>,D: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

,

1,0

1,1

1,2

2,0

2,1

2,2

3,0

3,1

3,2

1 0 5 6 8 9

1 1 2 3 4 7

1 2 1

2 0 1 3 7 9

2 1 2 4 6 8

2 2 5

3 0 1 2 4 5

3 1 3 6 7 8

3 2 9

k vk v p

p p p p p

p p p p p

p p

p p p p p

p p p p p

p p

p p p p p

p p p p p

p p

= + + +

= + + +

=

= + + +

= + + +

=

= + + +

= + + +

=
 

Another example is also presented using two facies and three point scale locations ' = 2, % = 3, 

therefore we have 2Kdifferent probability classes. Table below shows formulas for the univariate 

marginals of multivariate multiscale facies proportions, 
>,D: 

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

,

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

1 0 8

1 1 4 6 7

1 2 2 3 5

1 3 1

2 0 1

2 1 2 3 5

2 2 4 6 7

2 3 8

k vk v p

p p

p p p p

p p p p

p p

p p

p p p p

p p p p

p p

=

= + +

= + +

=

=

= + +

= + +

=
 

 

Future work 

Jointing these univariate marginal distributions in such a way that all of marginal distributions (& variate) 

are honored and correct in the presence of sum to unity and spatial correlation of data constraints with 

and without assumption of data conditioning might be the future work. The same algorithm can be 

performed to get the bivariate, trivariate, etc marginal distributions. This work can improve the facies 

simulation techniques at scales where mixing of facies is important and facies are not mutual exclusive 

any more. 
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List of Notations 
>,D  : The univariate marginal probability mass function for facies & at the scale of B 
�p�  : The probability of class index p  B  : Discrete random variable (location index) for all of the formula presented the range of  B is 0,1, … , % except for &D�p� which has the range of 1, … , %. p : Probability class index with the range of 0,1, … , '! '  : Total number of facies ( ' ≥ 2 ) %  : Total number of nodes in the upscaled block of interest (scale index) &D�p� : The Bth component for the probability class index;  p ≡ �&"�p�, … , &D�p�, … , &!�p�� 

   The &D�p� values are between 1 to ' B>�p�  : The total number of facies & in probability class p  

    The B>�p� values are between 0 to % y�,>��r� : The &D�p� − /ℎ threshold for truncating the simulated Gaussian values; for the          

    notation purposes it is assumed that  y�,� = −∞   , y�,= = +∞  �  : The % × 1 vector of stationary standard (zero mean and unit variance) multivariate  

    normal RF 

Σ  : % × % covariance matrix between locations to be upscaled 
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