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Reservoir Uncertainty Assessment 
 

Naeem Alshehri and Clayton V. Deutsch 

 

A reliable estimate of the uncertainty in the amount of oil or gas in a reservoir affects resource/reserve 

classification, investment decisions, and development decisions.  There is a need to make the best 

decisions with an appropriate level of technical analysis considering all available data.  Current methods of 

estimating resource uncertainty use spreadsheets or Monte Carlo simulation software using specified 

probability distributions for each variable.  3D models may be constructed, but they rarely consider 

uncertainty in all variables.  This research develops appropriate 2D and 3D models of heterogeneity and 

uncertainty.  This research improves reserve evaluation in the presence of geologic uncertainty.  Guidelines 

are developed to: a) select the best modeling scale for making decisions, b) understand parameters that 

play a key role in reserve estimates, c) investigate how to reduce uncertainties, and d) show the 

importance of accounting for parameter uncertainty in reserves assessment. The parameters addressed in 

this research are those required in the assessment of uncertainty including statistical and geological 

parameters.  This research shows that fixed parameters seriously underestimate the actual uncertainty in 

resources.  A methodology for the assessment of uncertainty in the structural surfaces of a reservoir, fluid 

contacts levels, and petrophysical properties is developed with accounting for parameter uncertainty in 

order to get a fairly global uncertainty.  Parameter uncertainty can be quantified by several approaches 

such as conventional bootstrap (BS), spatial bootstrap (SBS), and conditional-finite-domain (CFD). Real 

data from a large North Sea reservoir dataset is used to compare those approaches.  The CFD approach 

produced less uncertainty in distributions of the resource than those obtained from the BS or SBS 

approaches. The results are considered more realistic since they consider the correlation between the input 

data and the conditioning data. 

 

Introduction 

An accurate estimate of the reservoir volume is important for selecting number of wells to be drilled, 

deciding their locations, and making other reservoir development decisions. The first choice to make in 

any geostatistical study is the modeling scale. High resolution 3-D models are appropriate for modeling 

heterogeneity and providing input to flow simulation; however, they cannot be used effectively for 

uncertainty quantification. Global statistical analysis is appropriate for checking and providing input to 

parameter uncertainty, but it does not permit uncertainty assessment for specific locations or well 

patterns. Reserves estimations may be undertaken with 2-D modeling, which can be used in early stages 

of life reservoir and account for uncertainty in structural surfaces. 

 Hydrocarbon reserves are calculated as the product of gross rock volume, net/gross ratio, 

porosity, hydrocarbon saturation, formation volume factor, and recovery factor. A single resource/reserve 

figure (deterministic case) can be computed if the value of each parameter is well known. It is more 

realistic to represent individual parameters by a range of values, or a probability distribution. This leads to 

a probability distribution for the reserves and improved decisions. It is important to have a narrow and 

fair estimate of uncertainty at the early stages of field life; otherwise, designed production facilities might 

be underestimated or overestimated. 

 The uncertainty is due to limited data, measurement errors, and an imperfect model. Limited 

data leads to incomplete knowledge of the complex subsurface structure, petrophysical properties, and 

fluid properties. Errors in the measured data lead to increased error. It is difficult to generate a model 

that represents the real reservoir. With all these sources of uncertainty, a reasonable numerical model is 

needed to relate available data and understand the subsurface. 

 Reserves volumes have significant uncertainty due to sparse well data and uncertainty in 

structural surfaces. In this report, reservoir data was used to develop a classical geostatistical approach to 

surface simulation and uncertainty assessment. The top surface structure of a reservoir, subsequent layer 

thickness, and oil water contact depths are uncertain. The main controls on the uncertainty assessment 

are (1) the possible deviations from the base case seismic predicted surfaces, that is, a distribution of the 
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possible deviations from the base case, and (2) a variogram that specifies how fast the uncertainty 

increases away from the well locations. 

 Reservoirs consist of stratigraphic layers constrained by a top seal. The Gross Rock Volume (GRV) 

is the volume of a reservoir trapped between the top and bottom surfaces above the oil water contact 

(OWC), see Figure-1. Generally, the top and bottom structure surfaces are obtained from seismic 

interpretation, while the OWC can be estimated from the available wells. Seismic interpretation is 

performed in the time domain and transferred to depth with a time-to-depth conversion using some type 

of velocity model. There is no unique surface in units of depth because of uncertainties in the 

interpretation (in time) and uncertainties in the time-to-depth conversion. In general, the further away 

from the well locations is, the larger the uncertainties in the surfaces are, see Figure-2. Therefore, the 

calculated GRV is uncertain. This uncertainty is often recognized but not quantified. Simulation methods 

are implemented to assess the uncertainty in the GRV calculation. 

 

Methodology 

The estimation of Hydrocarbon Initially in Place (HIIP) can be calculated by multiplying GRV by Net-to-

Gross ratio (NTG) by porosity (φ) by hydrocarbon saturation (1-Sw). A reserve requires an estimate of 

recovery and an economic feasibility study. There is interdependence between these parameters. For 

example, the NTG is often correlated with thickness (h), porosity (φ), and water saturation (Sw). Another 

consideration is the uncertainty in parameters, plus the disparate data types such as seismic and sparse 

well data. 

 Four steps have to be done.  The first step is to quantify the uncertainty in the structure surfaces 

(such as Top/Bottom surfaces and reservoir thickness).  Second one is to quantify the uncertainties in fluid 

contacts levels (such as GOC, GWC, and/or OWC). Third step is to quantify uncertainties in some 

petrophysical properties (such as NTG, φ , and Sw). Fourth step is to find the uncertainty in HIIP calculated 

from the results of the first three steps combined to quantify full uncertainty. These steps will be 

conducted to quantify uncertainties without parameter uncertainty (without parameter uncertainty 

means a mean of zero for parameter uncertainty). 

 

Uncertainty with Parameter Uncertainty 

It is important to account for parameter uncertainty in the uncertainty calculations to get a fairly global 

uncertainty. There are several techniques for calculating parameter uncertainty in a required input 

histogram. These techniques include conventional bootstrap (BS), spatial-bootstrap (SBS), and Condition 

finite-Domain (CFD). A comparison between these approaches has been conducted and published by 

Babak and Deutsch (2006). 

 Any of the three techniques can be applied to quantify the uncertainty in the mean of each 

variable.  Uncertainty in the mean is of primary importance; the details of the histogram are of second 

order importance compared to the mean. Uncertainty in the variogram is sometimes considered; 

however, it is also of second order importance. Uncertainty in the mean of each parameter was quantified 

with the three techniques mentioned above and was compared to choose the optimum technique for 

quantifying full uncertainties in HIIP with parameter uncertainty for this case study. 

 The procedure for quantifying the uncertainties in estimating the reserve/resource volumes in 

the presence of geologic uncertainty involves five steps.  The first step is to calculate the means for 

variables of interested based on correlation coefficients between the variables. Second step is to quantify 

the uncertainty in the structure surfaces (such as Top/Bottom surfaces and reservoir thickness). Third one 

is to quantify the uncertainties in fluid contacts levels (such as GOC, GWC, and/or OWC). Fourth step is to 

quantify uncertainties in some petrophysical properties (such as NTG, , and Sw). Last step is to find the 

uncertainty in HIIP calculated from the results of the first three steps combined to quantify full 

uncertainty. These steps will be conducted to quantify uncertainties with parameter uncertainty. These 

scenarios will be run many times using different parameter uncertainty approaches. 
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Uncertainties in Reservoir Structure Surfaces 

The methodology to quantify uncertainty in reservoir structure surfaces with accounting for parameter 

uncertainty is similar to that done without parameter uncertainty except that the parameter mean for 

each realization will be variable; and it can be obtained from the parameter distribution generated by one 

of the three approaches mentioned above. The following steps were done to quantify the uncertainty in 

top and bottom surfaces and thickness: 

- the top and bottom surfaces from seismic interpretation were considered as reference surfaces, which 

have been fitted to well data.  

- the deviations from the reference surfaces are assumed to follow a known distribution (Gaussian as 

mentioned above). 

- the standard deviation of the parameter mean was determined by quantifying the mean uncertainty by 

one of the three approaches, BS, SBS, or CFD.  

- deviations can be simulated by a Sequential Gaussian Simulation with conditioning data at the well 

locations to be equal to dxl , which is calculated by the following equation: 

��� =
��
� ��	


	
             (1) 

where  l     = 1 , …, L (L = Number of realizations) 

mp
l
  = parameter mean drawn from parameter uncertainty distribution for the variable of 

interest; 

mo   = a mean obtained from 2D original data for the variable of interest; 

σo   = a standard deviation obtained from 2D original data for the variable of interest; 

Each realization has different value of dx
l
 since the standard deviation of the parameter mean was varying 

for each realization. 

- to reset the values at well locations to be zeros, the results of each realization has to be shifted by a 

value of (- dx
l
). 

- the deviations can be multiplied by the assumed correcting standard deviation then added to the 

reference surfaces/layer thicknesses. 

 

Uncertainties in GOC/OWC 

The uncertainty in GOC/OWC level is investigated by determining its minimum, mode, maximum levels 

and assuming a triangle distribution to quantify the uncertainty in GOC/OWC, then so many realizations 

can be generated by drawing the value of GOC/OWC at all nodes randomly from the triangle distribution 

where the mode value will be variable in each realization. 

 

Uncertainties in Petrophysical Properties 

The methodology of quantifying uncertainty in petrophysical properties with parameter uncertainty is 

similar to that without parameter uncertainty except the reference distribution that is used in the 

ultimatesgsim program was changed for each realization. The changing in the procedure was as the 

following: 

- The original data was used as reference distribution but it has to be shifted to fit a new parameter mean 

based on the mean and standard deviation of the parameter as a result of using one of the three 

approaches to quantify the parameter uncertainty. A program called shift_pdf was created for this 

purpose. 

- Each shifted reference distribution was used as an input file in the cosimulating process using an 

ultimate_sgsim code. 

 

CASE STUDY 

The following case study is based on data set of Hekla reservoir, a portion of a large North Sea fluvial 

deposit offshore Norway.  The Hekla data set is suitable for demonstrating the proposed approach.  The 

data are available in two data files.  The first file contains seismic data defining reservoir geometry, while 

the second file contains 20 well data including Well ID, X-Coordinate, Y-Coordinate, Depth, Log Porosity, 

and Log Permeability. 
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The reservoir consists of two major layers, H1 and H2.  It is also gridded horizontally into a 101 by 131 

cells, and each cell represents 50 meters in two directions, X and Y.  From the seismic data, 2D and 3D 

views of H1 top surface are shown in Figures 3 to give an idea about the field structures and trends. Figure 

3 also shows the contour maps for the top surface depth of both H1 and H2 with the distribution of the 

twenty well locations.  From the 3D view, it was noticed that the low thickness-thin areas crossing the 

field have two faults. 

 Well No. 8 was eliminated from the data since it is a horizontal well with length of about 1000 m.  

Therefore, the thickness found doesn’t reflect the actual vertical thickness in the layers especially H2 layer 

since H3 top structure is unknown. So, the study will be based on data of 19 wells only. 

 The histograms for all top structure depths from logs/well data were generated for the three top 

structures, H1, H2, and H3 layers.  There were no data about any fluid contacts levels; therefore, it was 

assumed that the reservoir is oil bearing with no Gas Cap while the Oil Water Contact (OWC) was assumed 

to be at 2150m depth as a base case. 

 In this study, the uncertainties of eight parameters and their effects on HIIP with and without 

parameter uncertainty were investigated individually and combined all together in a ninth case with full 

uncertainty. First case studied the effects of structure surface uncertainties on HIIP. Second and third 

cases studied the effects of first and second layer thickness uncertainties on HIIP individually. While the 

effects of OWC level uncertainties were studied in the fourth case. The fifth and sixth cases investigated 

the effect of NTG uncertainties for the two layers on HIIP individually. While the seventh and eighth cases 

investigated the effect of porosity uncertainties for the two layers on HIIP individually. The last case 

combined the effects of all parameter uncertainties on HIIP. The study results were as the following: 

 

Uncertainty Without Parameter Uncertainty 

 

CASE-1: Uncertainty of Top/Bottom Surfaces 

This case investigated the effects of Layers structures, top and bottom surfaces uncertainties on HIIP. 

GSLIB software was used first in the method to generate the variogram of the well data using a gamv2004 

code for the Top structure of H1 Layer. The variograms were calculated in the omnidirection due to sparse 

data. Then the vmodel code was used to obtain the best variogram model fitting the variogram result 

trends. The equation of the H1 Top Surface variogram model, as shown in Figure 12, is: 

γ(h) = 0.001 + 0.999 * sph        (2) 

 av = 1 

 ah1 = 2400 

 ah2 = 2400 

By getting the variogram model parameters, the conditional Gaussian simulation was ran using a sgsim 

code with conditioning data at the well locations to be zeros. 100 realizations were generated where each 

realization gives a Gaussian distribution with a mean of zero and a standard deviation of one. The results 

then were analyzed with OOIP program by multiplying the results with some standard deviations then 

adding the new results to the reference data, see Equation (3). The program was created for this purpose. 

The standard deviation of the distributions should be estimated by referring to seismic interpretation, and 

it was assumed to be 15 meters for the reference top and bottom surfaces in this study. Finally, the 

uncertainties in HIIP were estimated by calculating the HIIP of each realization and generating a 

distribution plot. 

( ) ( ) ( ) ( )ufuyuzuz l

b
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Three runs were conducted with different assumed OWC level; its level depth was assumed at 2050m in 

the first run, 2100m in the second run, and 2150m in the third one in order to investigate the impact of 

OWC level depth on the calculations; since calculating HIIP relays not only on the top and bottom 

surfaces, but also on OWC level. The influence of surface deviations on HIIP is restricted by OWC level. By 

comparing the results, it was obvious that the HIIP is higher with increasing OWC level depth, which is 

expected. From these three runs, it was determined to fix OWC at 2150m in all cases studying 

uncertainties in other parameters. In reality, OWC should be determined by logs or should be assumed at 

the lowest known hydrocarbon level, if not detected. 
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CASE-2: Uncertainty in H1-Layer Thickness 

In this case, the effects of H1 layer thickness uncertainties on HIIP were investigated. Simulated 

thicknesses are obtained for each layer by adding the reference thicknesses and normally distributed 

deviations. Similarly to what have been done in investigating the top/bottom surfaces structures, the 

deviations can be generated by a sgsim code with zero values at well locations. The problem in running 

this case is that the variogram model could not be generated due to a decreasing trend of the 

experimental variograms obtained from H1 layer thicknesses at well locations. Therefore, the variogram 

model obtained from top surface structure was used in case-2 to generate the Sequential Gaussian 

simulation conditioned to be zero at well locations. The standard deviation for H1 layer thickness was 

assumed to be 3m. 100 realizations were run to get the HIIP distributions. The results of HIIP distributions 

were obtained and summarized. 

 

CASE-3: Uncertainty in H2-Layer Thickness 

It was similar to what was conducted in the previous case, but the variogram model used in this case was 

generated using H2-Layer thickness data at all well locations, see the second plot in Figure-12; where the 

equation of the H2 Thickness variogram model is: 

γ(h) = 0.001 + 0.999 * sph        (4) 

 av = 1 

 ah1 = 4000 

 ah2 = 4000 

Then the deviations were generated by a sgsim code with a zero mean value and a standard deviation of 

one and conditioning values at well locations to be zeros. The standard deviation was assumed in this case 

to be 3m; and by generating 100 realizations, the HIIP distributions were obtained and summarized. 

 

CASE-4: Uncertainty in Oil/Water Contact Level 

In this case, the effects of OWC level uncertainties on HIIP were investigated by generating deviations 

randomly assuming a triangular distribution (minimum = 2148, mode = 2150, and maximum = 2152). 100 

realizations were run with different seed number to get the HIIP distributions above OWC. 

 

CASES-5 and 6: Uncertainty in NTG for H1 and H2 Layers 

The NTG data on well locations was inferred from well logs. It was based on assuming a porosity cutoff of 

10% in this study. 100 NTG realizations were generated by cosimulating NTG and Porosity simultaneously 

with thickness obtained from seismic data using an ultimate_sgsim code. The HIIP distributions were 

obtained and summarized for the effects of H1 layer NTG uncertainty and H2 layer NTG uncertainty 

individually. 

 

CASES-7 and 8: Uncertainty in Porosity (φφφφ) for H1 and H2 Layers 

As mentioned in above that porosity cutoff was assumed to be 10% in this study.  100 porosity 

realizations were generated for each layer using an ultimate_sgsim code by cosimulating NTG and 

porosity with thickness data obtained from Seismic data for each layer. The HIIP distributions were also 

obtained and summarized for the uncertainty effects of H1 and H2 layer porosities on HIIP, individually. 

 

CASE-9: Full Uncertainty Quantification 

In this case, multiple realizations should be drawn with uncertainty attached to all parameters, surface 

structures, layer thicknesses, OWC levels, NTG, and Porosity for each layer. The deviations were 

generated without parameter uncertainty (with a mean of zero) for all parameters and standard 

deviations of 15m for surface structure depths and 3m for each layer thicknesses. 100 realizations were 

generated to get the HIIP distributions above OWC level of 2150m.  Tornado charts of P90-Mean and P10-

Mean for all parameters affecting HIIP distribution for both H1 and H2 layers.  The results showed H1-

layer thickness uncertainty was the most effective parameter on HIIP distribution followed by the 

uncertainty in top and bottom structure surfaces, the uncertainty of H2-layer thickness, the uncertainty in 

petrophysical properties, and last the uncertainty in OWC level surface. From these results, it is obvious 
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that ignoring the uncertainty in reservoir structure surfaces might lead to underestimating of the global 

uncertainty and making bad decisions. The thickness and structure surface uncertainties were more 

effective on HIIP distribution than uncertainties of Petrophysical properties and OWC depth level, 

separately. 

 

Uncertainty with Parameter Uncertainty 

Three different methods, Conventional Bootstrapping method (BS), Spatial Bootstrapping method (SBS), 

and Conditional Finite Domain (CFD) method were used in this research to account for parameter 

uncertainty. Each of these three methods will be described briefly. 

 The BS method is a popular application of MCS technique. It is a statistical resampling technique 

that permits the quantification of uncertainty in any calculated statistics by resampling from the original 

data. It is based on two important assumptions: the data set is representative of the entire population 

and the data are independent, which is acceptable in early reservoir appraisal with widely spaced wells. 

 The independence assumption is unrealistic when the data are correlated.  Therefore, SBS was 

developed to account for the spatial correlation in the input data. Its program used LU simulation for 

generating the realizations (Deutsch; 2004). 

 The third method, CFD method was developed by Babak, Olena and Deutsch, Clayton V. (2006). 

CFD is based on a multivariate Gaussian distribution. It is the first approach that accounts for the two 

important factors related to the study area: size of domain and conditioning data. It is shown to be 

convergent in the sense of limiting uncertainty calculation, design independent and parameterization 

invariant. Table-4 summarizes the means and standard deviations obtained for all variables of interest 

using the three different parameter uncertainty approaches. 

 

CASE-1: Uncertainty of Top/Bottom Surfaces 

This case investigated the effects of Layers structures, top and bottom surfaces on HIIP with accounting 

for parameter uncertainty. The variogram was already generated in the previous scenario of calculating 

HIIP without parameter uncertainty. The standard deviation of the original data, σo and mean and 

standard deviation of H1 top depths were used as mentioned in the methodology above. 

 The conditional Gaussian simulation was ran using a sgsim code with conditioning data at the 

well locations to be dx
l
, which is calculated as shown in equation (1). The value is different in each 

realization. 

 100 realizations were generated where each realization gives a Gaussian distribution with a 

mean of zero and a standard deviation of one with conditioning data at well location to be dx
l
. Then the 

results of each realization were reset at well locations to be zeros by adding (-dx
l
) value to the realization 

results. Then the deviation results were nonstandardized by multiplying them by some standard 

deviations, which was assumed to be 15 meters in this case then added to the reference seismic data. 

Finally, the uncertainties in HIIP were estimated by calculating the HIIP of each realization and generating 

a distribution plot. 

 Three runs were conducted with different parameter uncertainty techniques, BS, SBS, and CFD, 

please see Table-5. By comparing the results the HIIP has more uncertainty with SBS approach to quantify 

the uncertainty in Top/Bottom Structure Surfaces while using CFD gave almost similar results compared to 

those obtained from BS approach; but the importance of accounting for parameter uncertainty is clear. 

 

CASE-2: Uncertainty in H1-Layer Thickness 

In this case, the effects of H1 layer thickness with parameter uncertainty on HIIP were investigated. 

Simulated thicknesses are obtained for each layer by adding the reference thicknesses and normally 

distributed deviations. Similarly to what have been done in investigating the top/bottom surfaces 

structures, the deviations can be generated by a sgsim code with conditioning values at well locations to 

be equal to dx
l
. where dx

l
 was based on standard deviation of original thickness data at well locations and 

mean and standard deviation of H1 thickness mean using BS, SBS, and CFD, as shown in Table-4. The 

results were reset at well locations to be zeros by adding (-dx
l
) to each realization data. Then the standard 

deviation for H1 layer thickness was assumed to be 3m. 100 realizations were run to get the HIIP 

distributions using each of parameter uncertainty approaches. The results of HIIP distributions were 
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obtained and summarized. The results show the importance of accounting for parameter uncertainty; 

even though, the results were almost the same with using all three approaches. 

 

CASE-3: Uncertainty in H2-Layer Thickness 

It was similar to what was conducted in the previous case, but the variogram model used in this case was 

generated using H2-Layer thickness data at all well locations. Then the deviations were generated by a 

sgsim code with a zero mean value and a standard deviation of one and conditioning values at well 

locations to be dx
l
 (based on H2-layer data). The standard deviation was also assumed in this case to be 

3m; and by generating 100 realizations, the HIIP distributions were obtained and summarized in Table 1 

for all three parameter uncertainty approaches.. 

 

CASE-4: Uncertainty in Oil/Water Contact Level 

In this case, the effects of OWC level uncertainties on HIIP were investigated by generating deviations 

randomly assuming a triangular distribution (minimum = 2148 and maximum = 2152). 100 realizations 

were run with different mode to get the HIIP distributions above OWC as shown in Table-5. 

 

CASES-5 and 6: Uncertainty in NTG for H1 and H2 Layers 

To quantify the parameter uncertainty in NTG, different reference distributions were obtained where 

each reference distribution has a mean matching a mean drawn from parameter uncertainty for the same 

parameter of interest. There were 100 reference distribution used separately as an input file to get 100 

NTG realizations by cosimulating NTG and Porosity simultaneously with thickness obtained from seismic 

data using an ultimate_sgsim code. In other words, the same methodology used in Cases 5 and 6 without 

parameter uncertainty were used but with changing the reference distribution for each realization. The 

uncertainty in HIIP due to uncertainty in NTG of each layer was obtained using three different parameter 

uncertainty methods. SBS and CFD were repeated for the same data but with higher variogram range upto 

2500m to investigate the effect of dependency on the results of using SBS and CFD methods. 

 The HIIP distributions for the three approaches were obtained and summarized in Table-5 and 

Figures-21 and 22 for the effects of H1 and H2 layer NTG uncertainties individually. SBS and CFD 

approaches were used again but with a high arbitrary variogram range, 2500m.  

 

CASES-7 and 8: Uncertainty in Porosity (φφφφ) for H1 and H2 Layers 

As mentioned in last two cases, 100 porosity realizations were also generated for both layers using an 

ultimate_sgsim code by cosimulating NTG and porosity with thickness data obtained from Seismic data for 

each layer in each approach with using different reference distribution as mentioned above. The HIIP 

distributions were also obtained and summarized in Table 5 for the uncertainty effects of H1 and H2 layer 

porosities on HIIP, individually. 

 

CASE-9: Full Uncertainty Quantification 

In this case, multiple realizations should be drawn with uncertainty attached to all parameters, surface 

structures, layer thicknesses, OWC levels, NTG, and Porosity for each layer. The value of parameter mean 

in each realization was obtained from using correlation coefficient among all parameters of interest and 

using LU simulation (using correlate code). Each parameter mean was used as described in Cases-1 to 3 to 

get the nonzero value that the conditional SGS will be equal at the well location. The deviations were 

generated with parameter uncertainty for all parameters and standard deviations of 15m for surface 

structure depths and 3m for each layer thicknesses.  

 100 realizations were generated to get the HIIP distributions as shown in Table-5 with assuming 

triangular distribution with a different mode value in each realization. 

T he means of parameter uncertainty for NTG and porosity were also obtained using the 

correlation coefficient among the variables as mentioned above where those parameter means were used 

to get shifted reference distributions that were used in the cosimulation of NTG and porosity with 

thickness obtained from Seismic Data (as described in Cases 5-8 with parameter uncertainty). 
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Discussion 

The orders of the parameters affecting HIIP uncertainty from the most effective parameter to the least 

effective one were summarized for all seven scenarios in Table 2. Two observations can be inferred from 

the comparison between those results. First, quantifying the uncertainty in HIIP without parameter 

uncertainty was more sensitive to structural surfaces parameters, then petrophysical properties, and last 

to the OWC. The other six scenarios quantifying the uncertainty in HIIP with parameter uncertainty were 

more sensitive to petrophysical properties, then structural surfaces parameters, and last to the OWC.  

 Second observation was about the order of the parameters in the six scenarios quantifying the 

uncertainty in HIIP with parameter uncertainty. It was almost the same except the porosity of H1 and H2 

layers that were exchanged in those six scenarios because their effects on the HIIP uncertainty were 

almost close to each other. 

 The effects of changing parameter uncertainty approach on all parameters of interest were 

investigated and summarized based on the HIIP distribution uncertainty. In all cases, it was obvious that 

ignoring parameter uncertainty gives always the narrowest HIIP distribution. By comparing the results of 

using different parameter uncertainty approaches, the order of the approaches was SBS, BS, and CFD as 

the results had more uncertainty distribution to less uncertainty distribution except case-2 where the 

order was reversed, CFD, BS, and SBS. The effects of using different parameter uncertainty approaches 

were almost the same in cases 1 to 3, but cases 5 to 8 showed a significant difference between the HIIP 

distributions. 

 In cases 5 to 8, increasing the variogram range affected on the HIIP distributions with using SBS 

and CFD approaches, while the results with using the BS approach were almost the same because SBS and 

CFD are based on the spatial correlation between the data but BS approach is based on the independency 

assumption between the data.  

 The standard deviations of the HIIP distributions obtained from using parameter uncertainty 

approaches were related to the standard deviations of the parameter uncertainty distributions used. For 

example in case 1, the order of the standard deviations of HIIP distributions was SBS, BS, and CFD, 

descendingly. As the order of the standard deviations of the parameter uncertainty was SBS (26.9m), BS 

(18.8m), and CFD (15.79m). This comment was applied for all cases. 

 The results of using different parameter uncertainty approaches were compared using the 

tornado chart. The narrowest HIIP distribution was obtained from estimating HIIP without parameter 

uncertainty. Using SBS approach gave the most uncertain distribution with a low/high variogram range 

compared to those obtained from using BS or CFD approaches. The BS approach results were almost the 

same with low/high variogram ranges. The result of using CFD approach was narrower than those 

obtained with using BS and SBS approaches but with high variogram range, the result of using BS 

approach became the narrowest compared to those obtained from using SBS and CFD approaches. 

 The probability and cumulative distribution frequencies of HIIP with full uncertainty were 

compared. Using BS approach produced more uncertainty in the HIIP estimates compared to the result 

without parameter uncertainty but BS approach was ignoring the spatial correlation between the data. 

Using SBS approach considered the spatial correlation between the data and produced more uncertainty 

in the HIIP distribution with high standard deviation compared to all other approaches. The CFD approach 

considered the correlation between the input data and the conditioning data, so it can be more realistic; 

even though, it is not such well known and popular as SBS approach. 

 BS approach might be recommended in the early stages of the reservoir life because of its 

simplicity. CFD approach might give the same results in that stage of the reservoir life plus it will give 

more realistic results as more data are gathered. The only disadvantage of using the CFD is the significant 

time required to generate a parameter uncertainty that might reach to a few hours depending on the 

input data and the CPU and this time is unwanted to make quick decisions. 

 

Conclusions and Future Work 

We would wish for the lowest uncertainty possible. However, too narrow uncertainty due to ignoring the 

uncertainty in the present geology leads to a false confidence in reserves and resources. Our aim is to 

obtain a realistic and fair measure of uncertainty. Decisions of stationarity and a modeling methodology 

are the most important factors in determining output uncertainty in any practical modeling study. 
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In this study, a methodology for the assessment of uncertainty in the structure surfaces of a reservoir, 

fluid contacts levels, and petrophysical properties was developed and investigated. A complete setup was 

considered with accounting for parameter uncertainty in order to get a fairly global uncertainty. There is 

no question that uncertainty in the input histogram main parameter, such as the mean, must be 

considered for realistic global uncertainty characterization.  There are several techniques for calculating 

parameter uncertainty in a required input histogram. These techniques include conventional bootstrap 

(BS), spatial-bootstrap (SBS), and Condition finite-Domain (CFD). 

 Any of the three techniques can be applied to quantify the uncertainty in the mean of each 

variable.  Uncertainty in the mean is of primary importance; the details of the histogram are of second 

order importance compared to the mean. Uncertainty in the variogram is sometimes considered; 

however, it is also of second order importance. Uncertainty in the mean of each parameter was quantified 

with the three techniques mentioned above. The results of uncertainty in HIIP distribution with/without 

parameter uncertainty were analyzed and assessed to show the importance of accounting for parameter 

uncertainty in estimating HIIP and choose the optimum technique for quantifying full uncertainties in HIIP 

with parameter uncertainty for this case study. 

 By comparing the results with using higher variogram ranges, it was obvious how important is to 

incorporate the dependency of data. Although, the more correlated the data are, the more uncertainty 

the HIIP has. Last, a complete setup for the assessment of uncertainty with parameter uncertainty in the 

presence of structural uncertainty was developed in order to get a fairly global uncertainty.  
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Table 1: HIIP analysis for Both Layers; values are in million cubic meters. 
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Scenarios Most effective parameters                                                                                 Less effective parameters 

No PU 
Thicknes

s of H1 

Top&bottom 

surfaces 

Thicknes

s of H2 

NTG of 

H1 
NTG of H2 

Porosity of 

H1 

Porosity 

of H2 
OWC 

BS 
NTG of 

H1 
NTG of H2 

Porosity 

of H1 

Porosity 

of H2 

Thickness 

of H1 

Top&botto

m surfaces 

Thicknes

s of H2 
OWC 

SBS 
NTG of 

H1 
NTG of H2 

Porosity 

of H1 

Porosity 

of H2 

Thickness 

of H1 

Top&botto

m surfaces 

Thicknes

s of H2 
OWC 

CFD 
NTG of 

H1 
NTG of H2 

Porosity 

of H2 

Porosity 

of H1 

Thickness 

of H1 

Top&botto

m surfaces 

Thicknes

s of H2 
OWC 

BS with 

high 

range 

NTG of 

H1 
NTG of H2 

Porosity 

of H1 

Porosity 

of H2 

Thickness 

of H1 

Top&botto

m surfaces 

Thicknes

s of H2 
OWC 

SBS with 

high 

range 

NTG of 

H1 
NTG of H2 

Porosity 

of H2 

Porosity 

of H1 

Thickness 

of H1 

Top&botto

m surfaces 

Thicknes

s of H2 
OWC 

CFD with 

high 

range 

NTG of 

H1 
NTG of H2 

Porosity 

of H1 

Porosity 

of H2 

Thickness 

of H1 

Top&botto

m surfaces 

Thicknes

s of H2 
OWC 

Table 2: Order of parameters affecting on HIIP distribution from the most effective parameter to the least 

effective one in all seven scenarios. 

 

 
Figure 1: Reservoir Cross-section: The reservoir is bounded by the top and bottom structure surfaces and 

above the OWC level as shown in the green area and excluding the non-pay facies. 

 

 
 

Figure 2: The uncertainty of the values of top/bottom surface structure and reservoir thickness increases 

as goes far from well locations. 
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Figure 3: 3D view of Hekla field, top structure of H1 layer.  Contour map of H1 layer depth in Hekla field 

with showing the distribution of twenty well locations. 

 

     
Figure 4: The variogram models for H1 Top Structure Depths and H2 Layer Thicknesses. 

 

 
Figure 5: Sensitivity analysis for quantifying HIIP with parameter uncertainty using CFD approach; the 

results are in millions m
3
. 


