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Optimal Placement of Samples in Presence of  

Locally Varying Anisotropy 
 

Brandon Wilde and Jeff Boisvert 

 

Optimal placement of samples has been considered by many researchers in the presence of constant or no 

anisotropy (see references in Wilde, 2009).  None have considered this problem in the presence of locally 

varying anisotropy (LVA).  The Hooke-Jeeves optimization algorithm is used to determine the optimum 

locations for samples within an LVA field.  A number of different initial configurations were investigated 

and it was found that even when starting with a near optimal solution, the CPU time and final objective 

function improvements were small.  Initial configurations implemented include randomly generated, 

regular spacing in a high dimensional transformed space, and Delaunay triangulation within the high 

dimensional transformed space.  The objective function implemented is the minimization of the distance 

between an estimation location and its nearest sampling point for all estimation locations.  The optimal 

configuration is characterized by close spacing perpendicular to the local direction of continuity and sparse 

spacing parallel to this direction.   

 

Introduction 

 

Paper 406 (Wilde, 2009) in this report compares a number of optimization techniques as applied to the 

problem of field measurement design (FMD).  The objective was to minimize the sum of the estimation 

variance within a geostatistical model by determining the optimum locations for a given number of 

samples.  As explained in that paper, the optimum sample locations for this objective function are known.  

McBratney et.al (1981) showed that for an isotropic field the estimation variance is minimized if sampling 

is performed on an equilateral triangular grid.  This known result was used as a benchmark to compare 

optimization algorithms in Wilde (2009).  The comparison revealed that the Hooke-Jeeves Pattern Search 

optimization technique was the most efficient algorithm for this problem.   

 Wilde (2009) also explained that the motivation for this comparison was to choose an algorithm 

to apply to the problem of FMD in the presence of locally varying anisotropy (LVA).  All previous work in 

the area of optimal FMD has been restricted to domains with constant anisotropy.  This paper 

demonstrates optimal FMD in the presence of locally varying anisotropy using the Hooke-Jeeves method.   

 The objective function has been improved upon from that used in Wilde (2009) which was to 

minimize the sum of the estimation variances.  This is computationally expensive as the kriging equations 

must be solved for every location for every new configuration of data.  Using another result from 

McBratney et.al (1981), the objective function has been modified to be less expensive.  McBratney et.al 

(1981) showed that when geologic semi-variograms are monotonic increasing functions, the kriging 

variance tends to increase as the distance between the interpolated point and the observation points 

increases.  The distance between an interpolated point and its nearest sampling point is minimized by 

sampling on an equilateral triangular grid.  The maximum estimation variance is also minimized if 

sampling occurs on an equilateral triangular grid.  As such, the objective function implemented in this 

paper is taken to be the minimization of the distance to the nearest sample location because it is much 

less computationally expensive.  

 In order to optimize the placement of samples in the presence of locally varying anisotropy, the 

locally varying anisotropy must be defined.  This paper presents two examples of FMD, the first uses a 

synthetic LVA field developed to mimic a channel deposit.  A second example is provided for the Jura data 

set (Goovaerts, 1997) to demonstrate the methodology on a more realistic scale.  Boisvert et.al (2007) 

discusses the methodology used to generate the LVA fields for both examples.   

Boisvert & Deutsch (2009) provide an in-depth discussion of geostatistical modeling with LVA.  For the 

purposes of this paper it is sufficient to understand that to consider geomodeling with LVA the entire 

geostatistical grid is embedded in a high dimensional Euclidean space where the data are isotropic.  The K 

coordinates of each grid cell block are determined by ISOMAP-L (Silva & Tenenbaum, 2003), details of 

which can be found in Boisvert & Deutsch (2008).   
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Hooke-Jeeves Pattern Search 

The Hooke-Jeeves optimization technique is a derivative free method based solely on evaluations of the 

objective function.  It has been compared to geographical exploration in that it visits an initial base point, 

explores around that base point, moves to a new base point, and explores around the new base point.  

This process repeats until the optimal solution is found or until the step size is sufficiently reduced.  The 

algorithm begins with a base point, x, and step size, h.  The exploratory move is performed first during 

which the objective function is sampled at successive perturbations of the base point in search directions, 

d.  The current best value fcb = f(xcb) and best point xcb are recorded.  xcb is initialized to x.  The sampling is 

managed by first evaluating f(xcb + vj) and only testing xcb - vj if f(xcb + vj) > f(xcb).  The exploratory phase will 

either produce a new base point or fail (meaning that xcb = x).  Note that this phase depends on the 

ordering of the coordinates of x.  Applying a permutation to x could change the output of the exploration.   

 If the exploratory phase has succeeded, the search direction is d = xcb – x and the new base point 

is xcb.  The subtle part of the algorithm begins here.  Rather than center the next exploration at xcb, which 

would use some of the same points that were examined in the previous exploration, the Hooke-Jeeves 

algorithm is aggressive and attempts to move further.  The algorithm locates the center of the next 

exploratory move at  

 2
b cb

x x d x d= + = +  (1) 

If this second exploratory move fails to improve upon f(xcb), then an exploratory move with xcb as the 

center is evaluated.  If that also fails, h is reduced, x is set to xcb, and the process is repeated (Kelley, 

1999).  A flow chart of this algorithm is shown in Figure 1. 

In this implementation the “base point” is an initial configuration of n sample locations, where n is 

defined by the user.  An exploratory move is considered as a shifting of the location of a single sample 

location by the step size in the x and y directions.   

 

Application of Hooke-Jeeves Method 

The aim of the optimization is to locate n data such that the distance between an estimation location, u, 

and its nearest sampling point is minimized for all u∈A.  An initial configuration of samples is generated 

by randomly drawing x,y coordinates for n data locations.  An initial step size is specified and the 

exploratory move is performed.  Consider that the coordinates for the first point are (13,17) and the initial 

step size is 10.  The exploratory move proceeds by first increasing (or decreasing) the x coordinate of the 

first point by the step size to a new location at (23,17).  The objective function is evaluated for this new 

configuration.  If the objective function is improved, the y coordinate of the first point is perturbed.  If the 

objective function is not improved, the x coordinate is decreased by twice the step size to (3,17) and the 

objective function evaluated.  If there is improvement, this coordinate is retained; if not the coordinate is 

returned to its initial value.  The y coordinate of the first point is then perturbed as with x and the 

procedure is repeated retaining the coordinates that gives the best value of the objective function.  This 

process of perturbing individual coordinates is repeated for all 2n coordinates.  Finally, the pattern move 

is performed.  Say a move from (13,17) to (23,27) resulted in the minimization of the objective function.  

The new data location (Equation 1) becomes: 

 ( )[ , ] [23,27] [23,27] [13,17] [33,37]new newx y = + − =  

This first iteration of an exploratory and pattern move is illustrated in Figure 2.  The same perturbation is 

applied to all n data.  The exploratory move is then repeated.  This cycle of exploratory and pattern moves 

is repeated until no improvement is made.  The step size is then reduced and the cycle repeats until the 

step size is deemed sufficiently small.  The final data configuration is considered optimal.   

 

Application to LVA Fields 

The goal is to locate n data within an LVA field such that the anisotropic distance between an estimation 

location u and its nearest sampling point is minimized for all u∈A.  Consider a geostatistical modeling grid 

with L cells.  The first step is to embed the cells into a k-dimensional space using MDS, as discussed in 

Boisvert & Deutsch (2009).  Next, n cells are chosen as initial data locations.  The initial locations can be 

chosen randomly or in a more intelligent manner, which is discussed below.  One limitation of using MDS 
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is that there are a discrete number of potential data locations as data can only be located at grid cell 

centers.  This can be mitigated by considering a smaller cell size but this increases CPU requirements.  The 

objective function for optimization is as follows: 

 ( ) ( )
2

, ,

1 1

min
n L k

i m j m

j i j m

f x x x
= = =

    
= −   

    
∑ ∑ ∑  (2) 

where L is the number of cells in the grid, n is the number of data locations, k is the number of 

dimensions, di,m is the m
th

 coordinate of the i
th 

grid cell, and dj,m is the m
th

 coordinate of the j
th 

data 

location.  The Hooke-Jeeves algorithm is then employed to find the optimal data configuration.  The step 

size is the number of cells to shift each coordinate by.  The algorithm proceeds until the step size is 1 and 

no further improvements can be made.   

 This method is applied to two LVA fields: the first is an artificial channel field with high anisotropy 

in the channel and no anisotropy outside the channel; the second example is a more realistic smoothly 

varying field with constant anisotropy based on the Jura data set (Goovaerts, 1997).  These fields are 

shown in Figure 3.  For the first case, consider a randomly generated initial configuration.  This is the 

starting point for the Hooke-Jeeves algorithm.  The objective function is evaluated for this configuration 

after which the cycle of exploratory move, pattern move and step reductions is performed.  Once the step 

size is sufficiently small, the final data locations are returned.   

 The initial and final configurations for the channel and smooth LVA fields are shown in Figure 4 

and Figure 5 respectively.  Note that for the final configuration in the channel field, the data are regularly 

spaced where the field is isotropic while the data within the channel are closely spaced perpendicular to 

the channel and sparsely spaced parallel to the channel.  This is an intuitive result as it is reasonable to 

expect the optimal configuration to contain more densely sampled data within the highly anisotropic 

zone.  For the final configuration in the smooth field, the data are closely spaced perpendicular to the 

direction of continuity and are remotely spaced parallel to the direction of continuity.  

 

Generating Intelligent Initial Configurations 

It is desirable to have initial configurations that begin at a lower objective function evaluation as this 

reduces the CPU time of the algorithm and results in a lower final objective function value.  Two methods 

for generating the initial configuration have been considered.  Both involve choosing evenly spaced points 

in the transformed k-dimensional Euclidian space (Boisvert & Deutsch, 2008).  The first method places the 

samples at locations which fall on a regular grid in the first two k-dimensions while the second uses 

conforming constrained Delaunay triangulation to evenly space the sample points. 

 

Regular Spacing in the Transformed Space 

It has been shown that after applying the transform to k-dimensions the data are isotropic (Sampson and 

Guttorp, 1994).  Ideally, all k dimensions in the transformed space would be considered when placing 

samples on a regular grid.  However, this is difficult to implement as k can be large (Boisvert & Deutsch, 

2008).  Instead, only the first two dimensions in the transformed space are considered.  For example, after 

embedding the channel LVA field, the first two dimensions appear as shown in Figure 6 (left).  The channel 

is clearly visible through the middle of the field.  The cells in this field are discretized into 100 smaller cells.  

The coordinates of the cells for the first two dimensions are shown in Figure 6 (right).   

 Samples are placed on a regular grid using the first two dimensions of the coordinates in 

transformed space as shown in Figure 7 (left).  The corresponding real space sample locations are shown 

in Figure 7 (right).  Note the similarity between this configuration and the optimal configuration in Figure 

4.  The evaluation of data locations shown in Figure 7 is computationally fast and provides an initial data 

configuration for optimization that is closer to the optimal configuration.  The final configuration 

generated using this initial configuration is shown in Figure 8.  A number of samples have migrated from 

the channel leaving only four data in the channel.  These points are sparsely spaced due to the high 

continuity present within the channel.  Many more points are required outside of the channel due to 

reduced continuity. 
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The same method for generating an initial configuration was used for the smooth LVA field.  The 

coordinates of the 90,000 (300x300) grid cells are shown in Figure 9 (left) along with an overlay of a 

regular grid used to locate the samples.  The locations of these samples are shown in real space in Figure 

9 (right).  The similarity between this configuration and the optimal configuration in Figure 5 is not as 

striking as for the channel field, but this configuration does have a lower starting objective function value 

than the random initial configuration.  The final configuration (Figure 10) generated using this initial 

configuration has moved some points closer to the edge to reduce the distance to a sample along the 

boundaries of the domain.  It has also moved the points such that they are closely spaced perpendicular 

to the direction of continuity and sparsely spaced parallel to the direction of continuity. 

 

Conforming Constrained Delaunay Triangulation 

Another method for obtaining an improved initial configuration is to use conforming constrained 

Delaunay triangulation (Shewchuk, 2005).  This method creates a two-dimensional finite element mesh 

within the transformed space.  The center-point of each mesh is used as an initial data location.  This 

method was used for the smooth LVA field (Figure 11 left).  The corresponding locations in real space are 

shown in Figure 11 (right).  The objective function value using this configuration is higher than the value 

obtained using the regular grid method and requires trial and error to determine the input parameters 

which yield the desired number of meshes.  For these reasons, this method is not pursued further. 

 

Conclusion 

Determining the optimal data locations within an LVA field is an interesting problem.  If the LVA field is 

known for a deposit of interest, future sampling campaigns can be designed to incorporate these locally 

varying directions of continuity.  This paper implemented an objective function that is the minimization of 

the distance from an unsampled location to its nearest sampled location.  The optimal data configurations 

has shown that the minimum objective function is found for close spacing perpendicular to the direction 

of continuity and sparse spacing parallel to this direction.  This result is intuitive as more data are required 

to minimize uncertainty when continuity is low and fewer data can be used in areas that are very 

continuous.  This agrees with McBratney et. al’s (1981) statement that an optimal sampling scheme in 

presence of anisotropy will have greater spacing in the direction of continuity than perpendicular to this 

direction but has been extended to incorporate LVA. 
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Figure 1:  Flow chart of the Hooke-Jeeves algorithm. 

 
 

Figure 2:  Illustration of exploratory and pattern moves. 
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Figure 3:  Locally varying anisotropy fields for the case studies.  Left: the channel example with 10:1 

anisotropy inside the cannel and 1:1 outside.  Right: The smooth LVA field with constant 3:1 anisotorpy. 

 

         
Figure 4:  Initial and optimal data locations for the channel LVA field with objective function values of 

562947 and 381627 respectively. 

 

         
Figure 5:  Initial and optimal data locations for the smooth LVA field with objective function values of 

2029585 and 1543080 respectively. 
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Figure 6:  Transformed grid cell coordinates for the channel LVA field: left) 10m cells; right) 1m cells. 

 

   
Figure 7:  Initial data location coordinates for the channel LVA field shown in:  left) transformed space;  

right) real space with objective function value of 431260. 

 
Figure 8:  Final data location coordinates for the channel LVA field shown in: left) transformed space;  

right) real space with objective function value of 380285. 
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Figure 9:  Initial data location coordinates for the smooth LVA field with a regular grid used to locate data 

shown in: left) transformed space;  right) real space with objective function value of 1685035. 

  
Figure 10:  Final data location coordinates for the smooth LVA field shown in: left) transformed space;  

right) real space with objective function value of 1542587. 

 

  
Figure 11:  Data location coordinates for the smooth LVA field with Delaunay triangulation used to locate 

data shown in: left) transformed space;  right) real space with objective function value of 1713923. 


