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Hierarchical Multivariate Regression for Mineral Recovery and 

Performance Prediction 
 

J.B. Boisvert, Mario E. Rossi and Clayton V. Deutsch 

 

Mineral recovery and expected plant performance are difficult to predict because they are influenced by a 

large number of variables such as mineralogy, grade, grain size, plant operation parameters, etc.  Often 

constant recovery factors and plant efficiencies are assumed for a given mine based on past experience 

and empirical rules.  Such methods are acceptable during the feasibility stages of mineral exploration; 

however, when results of pilot plant trials are available, statistical methods can be utilized to better 

predict recovery and plant performance.  In this paper, 841 bulk samples from flotation and leach tests are 

used for the calibration of a predictive model.  The end result is a model that can be used to predict 

recovery and plant performance based on available geometallurgical data. 

 

Over 200 geometallurgical variables are available to develop a hierarchical linear regression model for the 

case study considered.  Redundant and unimportant variables are identified and removed from the 

modeling process, reducing the number of variables to 112.  Through a number of hierarchical variable 

amalgamation steps the variables are condensed into 4 major sub-categories.  A linear model based on 

these 4 amalgamated variables provides a predictive model that is used to estimate potential mineral 

recovery and plant performance over the mine extents.  Minerals of interest in this mine include copper 

and uranium with secondary production of gold and silver.  

 

Introduction  

Plant performance is highly dependent on a large number of variables, such as (1) plant feed (2) 

operational parameters (3) equipment efficiencies (4) equipment repairs.  The purpose of this paper is to 

relate available geometallurgical data to plant performance.  This is done by correlating the available data 

to pilot plant trials.  A total of 841 pilot runs are available with associated plant feed mineralogy, head 

assays and mineral association data; these data types are described in  

Table 1.  Plant performance indicators of importance include recovery of Cu and U3O8, acid consumption 

(used in the leaching process), net recovery, drop weight index (DWi) and bond mill work index (BMWi); 

using the data in  

Table 1 as input to a regression model, these six plant performance variables can be predicted at all 

locations in the deposit. 

 

Table 1: Data available. 

Data Type Description Notes 

Head 

Assays 

 

This data contains the % content of various important 

elements, including:  

Co, As, Mo, Ni, Pb, Zn, Zr, Sr, Bi, Cd, Cs, Ga, In, Sb, Se, Te, Th, Tl 

 

This data is compositional in 

nature.  This will be exploited 

when modeling these variables in 

paper 303, also in this report. 

 

Mineralogy 

 

 

 

A total of 10 identified minerals make up the bulk of the 

deposit.  These include: Brannerite, Coffinite, Uraninite, Pyrite, 

Chalcopyrite, Bornite, Chalcocite, Other Sulphides, Acid Soluble 

Gangue and Acid Insoluble Gangue 

 

 

This data is also compositional in 

nature.  This will be exploited 

when modeling these variables in 

paper 303. 

 

 

Association 

Data 

 

A number of thin sections are available.  These have been 

analyzed and the complete matrix of associations between 

minerals is available.  This describes the contact area between 

two adjacent minerals within a single grain of crushed 

material. 

This data is also compositional in 

nature.  This will be discussed 

more in paper 303. 
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Methodology 

A linear regression model is used to predict the plant performance variables.  One drawback with a linear 

regression model is that all input variables are required for prediction.  Thus, if a single input variable is 

missing from a sample, the regression model cannot be applied.  For this reason, three regression models 

are generated (Table 2).  Each model represents a decreasing number of input parameters.  For example, 

for locations in the deposit where association data is not known the “Full Model” cannot be applied and 

the “Typical Model” would be appropriate. 

 

Table 2: Description of predictive models generated. 

Model Input variables Output Comments 

Full Model 

 

-head assays (i.e. %cu, %U 

…) 

-10 mineralogy 

-10x11 matrix of 

associations 

-specific gravity 

 

-Cu, U, Au, Ag 

recoveries 

-acid consumption 

-net recovery (U) 

-BMWi and DWi 

 

This model represents the 

maximum data available. 

 

Typical Model 

- head assays (i.e. %cu, %U 

…) 

-10 mineralogy 

-specific gravity 

 

-Cu, U, Au, Ag 

recoveries 

-acid consumption 

-net recovery (U) 

-BMWi and DWi 

 

This is the base case 

model.  Field data will 

most likely contain all 

these variables 

 

Limited Model 

-limited head assays 

-7 mineralogy variables 

-specific gravity 

-Cu, U, Au, Ag 

recoveries 

-acid consumption 

-net recovery (U) 

-BMWi and DWi 

Only head assays that have 

many samples in the 

available database are 

considered. 

 

The regression models are based on a large set of input variables.  The variables are merged into super 

secondary variables using a likelihood based on the correlations between variables.  This is done because 

there are two few sample data available to accurately determine regression coefficients for the 204 input 

variables available.  The final model is a linear regression on four super secondary variables.  The overall 

methodology consists of six steps: 

1) Normal score the input variables. 

2) Merge the variables (level 1).  This step reduces the 112 input variables to 23 merged variables. 

3) Merge the variables (level 2).  This step reduces the 23 merged variables to 4. 

4) Regression on the 4 variables. 

5) Back transform the estimated variables (DWi, BMWi, Cu recovery, U3O8 recovery, acid 

consumption and net recovery). 

6) Determine uncertainty in the model 

Each step of the model building process will be expanded upon. 

 

Step 1: Normal score data 

First the number of variables must be reduced.  Variables are removed from the analysis because (1) they 

have a low correlation to the six output variables or (2) they are redundant with one of the other input 

variables.  A variable was considered to have a low correlation if the maximum correlation to any of the 

output variables was less than 0.13.  A variable was considered redundant with another input variable if it 

had a correlation greater than 0.94.  This reduces the number of input variables to 112. 

 There are a total of 841 samples available for modeling; however, not all samples contain all 112 

variables used in the calibration of this model.  Due to the nature of a regression model, it is necessary 

that all 112 variables be present for a sample to be used for calibration.  Of the 841 samples, 328 samples 
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were retained for modeling.  Figure 1 shows which variables are lacking in the overall data set, more data 

are available if the mineral associations are ignored (i.e. the typical model).   

 All 118 variables (112 input + 6 output) are independently normal score transformed.  A visual 

assessment of the bivariate relationships between the input data indicated very few non-linear 

relationships; therefore, stepwise conditional transformations are not considered. 

 

 
Figure 1: Number of samples available for modeling.  Each variable is numbered 8 through 239. 

 

Step 2: Merge variables - reduce 112 input variables to 23 merged super secondary variables. 

There is a danger of over fitting the available calibration data if a regression model is constructed on all 

112 input variables.  Therefore, subsets of the input data were amalgamated to construct super 

secondary merged variables.  These merged variables are linear combinations of a subset of variables and 

significantly reduces the dimensionality of the problem while also reducing model over fitting; see Error! 

Not a valid bookmark self-reference. and Error! Not a valid bookmark self-reference. for the 

specific subsets of variables used.  These subsets were generated using geophysical knowledge to merge 

related variables.  The selection of subsets could be further optimized to improve model performance and 

is discussed in future work.  

 Specifically, the merged variables are generated by assigning weights to each variable (Equation 

1). These weights are generated by solving Equation 2 for each merged variable and for each of the six 

output variables.  The right hand side of Equation 2 contains the correlation between one of the variables 

of interest and the n input variables to be merged, the left hand side is the correlation between all n 

variables to be merged. 

  (1) 

where n is the number of variables to be merged based on the weights from a likelihood calculation. 

                                                        (2) 

These correlation matrices are often poorly conditioned.  Poorly conditioned matrices cause extreme 

weights(λi) and introduce unwarranted noise in the predictions.  To prevent this, the correlation matrices 

are fixed to improve their stability.  This correction is accomplished by decreasing the values of the off 

diagonal elements of the matrix, which increases the value of the smallest eigenvalue for the matrix and 

increases stability.  The minimum eigenvalue for the correlation matrices was set to 0.05.  24 of the 

correlation matrices for the full model required a correction, 18 of the correlation matrices for the typical 

model required a correction and 12 of the correlation matrices for the limited model required a 

correction. 
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 The merged variables are a linear combination of N(0,1) variables.  Thus, the mean of the merged 

variables will be 0 but the variance will not be 1.  The merged variables are standardized by the standard 

deviation determined from the following classical relationship: 

 (3) 

Thus, the final merged variable becomes: 

 (4) 

 

Step 3: Merge variables - reduce 23 input variables to 4 merged variables for regression. 

There are two levels of variable amalgamation.  The first level grouped related variables into 16 merged 

variables and retains 7 additional variables for a total of 23 variables (Error! Not a valid bookmark 

self-reference.).  The second level groups the variables into the final 4 super-secondary variables used 

for regression (Error! Not a valid bookmark self-reference. and Error! Not a valid bookmark 

self-reference.): 
A. Retained variables 

B. Head assays 

C. Mineralogy 

D. Associations 

 

Step 4: Regression.   

The typical and limited models are generated by regression on variables A, B and C while the full model 

considers variables A through D.  Regression is preformed with both linear and quadratic terms but 

through a cross validation exercise it was found that increasing the number of terms beyond the linear 

coefficients resulted in little consistent gain and the linear model is sufficient.  Thus, the final model 

becomes: 

 (5) 

Step 5: Back Transformation.   

Once the predictions are made in normal space for each of the six output variables, they must be 

transformed back into original units using the original transformation tables from Step 1. 

 

Figure 2: Variables used in the limited model. A total of 28 input variables are considered. 

 

 

 

 

 

Retained Merged_1 Merged_2 Merged_3 Merged_4 A B C
Cu(wt%) Co(ppm) Fe(wt%) Chal_Wt% Sul_Wt% Cu(wt%) Merged_1 Merged_3

U3O8(ppm) Mo(ppm) Al(wt%) Born_Wt% A_Sol_Wt% U3O8(ppm) Merged_2 Merged_4

SG Pb(ppm) Si(wt%) Chalco_Wt% A_Insol_Wt% SG

Ag(ppm) Zn(ppm) K(wt%) Pyr_Wt% Ag(ppm)

Au(ppm) La(wt%) Ca(wt%) Au(ppm)

Badj%S Ce(wt%) P(wt%) Badj%S

Ti(wt%)

S(wt%)

CO2(wt%)  
Figure 3: Variables used in the regression models. 

 

 

 
LEVEL 1: 19 variables (15 merged variables + 4 variables retained) 

LEVEL 1:  

10 variables 

(4 merged variables + 6 variables retained) 

LEVEL 2:  

3 final variables 
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Retained Merged_1 Merged_2 Merged_3 Merged_4 Merged_5
Cu(wt%) Ba(wt%) La(wt%) Uran_Wt% Chal_Wt% Sul_Wt%

U3O8(ppm) Fe(wt%) Mg(wt%) Cof_Wt% Born_Wt% A_Sol_Wt%

SG Al(wt%) Mn(wt%) Bran_Wt% Chal_Wt% A_Insol_Wt%

K:Al Si(wt%) Na(wt%) Pyr_Wt%

K(wt%) P(wt%)

Ca(wt%) Ti(wt%)

S(wt%)

CO2(wt%)

F(wt%)

 
Merged_6 Merged_7 Merged_8 Merged_9
Bran_Pyr_assoc Cof_Bran_assoc Uran_Cof_assoc Pyr_Cof_assoc

Bran_Chalcopy_assoc Cof_Uran_assoc Uran_Chalcopy_assoc Pyr_Uran_assoc

Bran_Bornite_assoc Cof_Pyr_assoc Uran_Bornite_assoc Pyr_Chalcopy_assoc

Bran_Chalcocite_assoc Cof_Chalcopy_assoc Uran_A_Sol_assoc Pyr_Sulphides_assoc

Bran_A_Sol_assoc Cof_Chalcocite_assoc Uran_A_Insol_assoc Pyr_A_Sol_assoc

Bran_A_Insol_assoc Cof_Sulphides_assoc Pyr_Free_Surf_assoc

Bran_Free_Surf_assoc Cof_A_Sol_assoc

Cof_A_Insol_assoc

Cof_Free_Surf_assoc

 
Merged_10 Merged_11 Merged_12
Chalcopy_Bran_assoc Bornite_Cof_assoc Chalcocite_Chalcopy_assoc

Chalcopy_Cof_assoc Bornite_Pyr_assoc Chalcocite_Bornite_assoc

Chalcopy_Uran_assoc Bornite_Chalcopy_assoc Chalcocite_Sulphides_assoc

Chalcopy_Pyr_assoc Bornite_Chalcocite_assoc Chalcocite_A_Sol_assoc

Chalcopy_Bornite_assoc Bornite_Sulphides_assoc Chalcocite_A_Insol_assoc

Chalcopy_Chalcocite_assoc Bornite_A_Sol_assoc Chalcocite_Free_Surf_assoc

Chalcopy_Sulphides_assoc Bornite_A_Insol_assoc

Chalcopy_A_Sol_assoc Bornite_Free_Surf_assoc

Chalcopy_A_Insol_assoc

Chalcopy_Free_Surf_assoc  
Merged_13 Merged_14 Merged_15
Sulphides_Uran_assoc A_Sol_Bran_assoc A_Insol_Bran_assoc

Sulphides_Pyr_assoc A_Sol_Cof_assoc A_Insol_Cof_assoc

Sulphides_Chalcopy_assoc A_Sol_Uran_assoc A_Insol_Uran_assoc

Sulphides_Bornite_assoc A_Sol_Pyr_assoc A_Insol_Chalcopy_assoc

Sulphides_A_Sol_assoc A_Sol_Chalcopy_assoc A_Insol_Bornite_assoc

Sulphides_A_Insol_assoc A_Sol_Bornite_assoc A_Insol_Sulphides_assoc

A_Sol_Chalcocite_assoc A_Insol_A_Sol_assoc

A_Sol_Sulphides_assoc A_Insol_Free_Surf_assoc

A_Sol_A_Insol_assoc

A_Sol_Free_Surf_assoc  
 

 

 

 
A B C D

Cu(wt%) Merged_1 Merged_4 Merged_7

U3O8(ppm) Merged_2 Merged_5 Merged_8

SG Merged_3 Merged_6 Merged_9

K:Al Merged_10

Ag(ppm) Merged_11

Au(ppm) Merged_12

Badj%S Merged_13

Merged_14

Merged_15

Merged_16  
 

Step 6: Determine uncertainty in the model 

When a prediction is made the uncertainty in that prediction is also determined.  The uncertainty is 

obtained by examining the distribution of true values for a given estimate.  Consider the difference in 

making an acid consumption prediction of 60 vs. 220 (Figure 4).  There is more uncertainty in the estimate 

of 220.  The measure of uncertainty used is the spread of the true values around the estimate.  A p10 and 

p90 range is given for each estimate based on the true values near the estimate.   

 

Variable A contains individual variables retained. 

Variable B contains the remainder of the head assays. 

Variable C contains all mineralogy variables. 

Variable D contains all association variables. 

LEVEL 2: 4 Final Variables 



Paper 302, CCG Annual Report 11, 2009 (© 2009) 

302-6 

 
 

Figure 4: Determining the uncertainty in an estimate of 60 vs. 220.  There is more uncertainty at 220.  

 

Analysis 

This section will explore the effectiveness of the different models.  All samples were used to generate the 

regression models with the above methodology.  High correlation between the estimate and the truth is 

desirable.  Figure 5 shows the models built on all possible data points available for the different models. 

 Rather than show the 768 coefficients for variable merging and the 24 regression coefficients, a 

tornado chart (Error! Not a valid bookmark self-reference.) will be used to illustrate the influence 

of each of the 112 variables on the overall model.  The lower limit is determined by selecting the p10 value 

for the input variable of interest and setting all remaining 111 variables to their p50 value.  An estimate is 

made for each of the six output variables, giving the lower limit on the tornado chart.  Similarly, the p90 

value is selected for the variable of interest to generate the upper limit on the tornado chart.  A short 

horizontal line to the left of the variable indicates that the variable is negatively correlated with the 

output variable (i.e. the p10 response is higher than the p90).  Bars are shaded based on the origin of the 

variable: White – Head Assays; Gray – Associations; Red – Mineralogy; Black – Specific gravity. 

 

Some interesting relationships were discovered in the cross plots and the tornado charts: 

• Na is a significant contributor for DWi/BMWi – indicates different mineralogy 

• SG is important for DWi but not BMWi – this is expected as it matters whether the rock is brittle 

or not, and this is related to the ratio of iron/silica content in the rock matrix 

• BMWi is heavily influenced by the head assays (top 6 variables contributing to BMWi are from 

head assays) 

• Individual mineralogy variables have little significance (Cu recovery is the exception).   

• Presence of Chalcopyrite and acid (in)soluble gangue are critical to Cu recovery. 

• Cu wt% has a large effect on U3O8 recovery but little effect on Cu recovery. 

• Based on the tornado charts, associations are important for DWI, Cu recovery, acid consumption 

and net recovery.  This is also seen in the comparison of the typical and full models (Figure 5) as 

the BMWi and U3O8 recovery predictions are not significantly altered by removing the association 

data.  

• Recoveries are the most difficult variables to predict (lowest correlation on Figure 5).  This is 

expected, as recovery is dependent on a large number of complex interactions. 
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Future Work 

There are a number of opportunities for potential improvement on the modeling methodology presented 

in this paper: (1) Regression Model: Optimize the merging of the variables at the two different levels.  The 

merging of the variables was done using logical groupings of the 112 variables.  An optimization 

procedure could be developed to select ideal subsets of variables to increase the predictive power of the 

regression model. (2) Regression Model:  There may be an ideal set of variables to use for each variable 

predicted.  In this work, all 112 variables were used for all 6 output variables.  Eliminating some of the less 

significant variables may reduce noise and increase model accuracy.  This could be considered during the 

optimization of the merging of the variables (see point #1 above). 

 

Figure 5: Cross plots of the truth/estimated values based on the full model (this page) and the typical 

model (next page) and the limited model (next page). 
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Figure 6: FULL model Tornado charts for DWi, BMWi and Cu recovery (this page) as well as U3O8 recovery, 

acid consumption and net recovery (bottom).  White – Head Assays; Gray – Associations; Red – 

Mineralogy; Black – SG. 


