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Multivariate Geostatistical Simulation of Proportions and 

Nonadditive Geometallurgical Variables  
 

J.B. Boisvert, Mario E. Rossi and Clayton V. Deutsch 

 

Recovery and plant performance outcomes are influenced by a large number of variables, including head 

assays, mineralogy and mineral associations.  Models that utilize all these variables outperform models 

based on head assays alone.  This paper discusses the geostatistical modeling of the required input 

variables.  Due to the nature of the head assays and mineral association data, unique challenges arise 

when attempting to model such variables.  Specifically, the compositional nature of the variables must be 

accounted for.  Moreover, many of the variables are correlated and require methodologies that are simple, 

yet effective.  In the proposed methodology, data transformations are used to maintain the compositional 

nature of the variables and PCA analysis is used to consider complex relationships between the variables. 

 

Introduction  

In this paper, modeling methodologies are developed for a total of 135 variables, separated into three 

groups: head grade assay values; grain size measurements; and mineral associations.  Significantly more 

samples exist for the head grade variables, therefore they are modeled first.  The grain size and 

association variables are modeled using the head grade realizations as secondary information. 

 The head grade and mineral association data are considered compositional, that is, they sum to 

100%.  A logarithmic transform is used to deal with this constant sum constraint.  Normally, these 

variables would then be cosimulated with sequential Gaussian simulation (SGS); however, the large 

number of variables available and the large grid size makes this procedure too computationally intensive.  

An alternative is to perform a principal component (PCA) transform on the logarithmic data to generate 

uncorrelated variables.  SGS is then preformed on the uncorrelated PCA values.  The values are back-

transformed into original units to generate the realizations.  This procedure is used to model the head 

grade and mineral association data.  The grain size data, which are not compositional, are modeled using 

sequential Gaussian cosimulation for the p20, p50 and p80 values of each mineral. 

 

Modeling 23 head grade variables 

Recall that the plant performance modeling in paper 302 required a total of 23 head grade variables for 

input into the linear regression models: Cu, U3O8, Ag, Au, Co, Mo, Pb, Zn, Ba, Fe, Al, Si, K, Ca, S, Co2, La, 

Mg, Mn, Na, P, Ti, Ce.  These 23 variables are simulated on a grid with the following dimensions: 

xmin=56105; ymin=30515; zmin=-1932.5; xsiz=10; ysiz=10; zsiz=15; nx=360; ny=624; nz=119.  There are a 

total of 111,572 head assay samples used in the modeling.  Note that the K:AL ratio and BadjS are also 

required, but are simply calculated from the realizations of K, Al, Ba and S. 

 The head grade variables are considered compositional because all chemical and mineral rock 

components must sum to 100%.  Because not all elements in a sample are assayed, the sum of the head 

grades is always less than 100%.  However, in geostatistical modeling if this constraint is not explicitly 

imposed it can be violated in some areas of the model.  For this reason a logarithmic transform of the 24 

head grade variables is considered.  There are 24 variables because the remaining proportion of the 

sample is included to impose the 100% constant sum (i.e. the 23 variables listed above + 1 filler variable).  

The logarithmic transform is: 

 
where yi is the new variable to be modeled and xi are each of the 23 variables to be modeled.  This 

transformation requires that there are no zero values for any variable as ln(0) is undefined.  The back 

transformation is: 
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There are now 23 logarithmic transformed variables.  There is a complex relationship between these 23 

variables, consider their correlations (Figure 1).  It would be difficult to reproduce all these relationships 

with traditional SGS, therefore, an additional transformation is considered.  The PCA transform generates 

23 new uncorrelated variables.  These variables are linear combinations of the 23 logarithmic variables 

but are uncorrelated.  An assumption of independence between the 23 variables is then made and all 23 

PCA variables are modeled independently with SGS.  This ensures good reproduction of the correlation 

between the 23 variables in the final realizations (Figure 1).  An overall summary of the transformations 

used is shown below: 

 

 
This methodology assumes that the normal score values of the principal components are independent.  

The PCA transform ensures that the correlation between the components is zero; however, the 

components may not be independent.  Poor histogram reproduction is seen in original units due to this 

lack of independence.  There are a large number of head assay samples which makes the input histogram 

reliable; they should be reproduced in the simulation.  To obtain reasonable histogram reproduction the 

final simulations are post processed with TRANS to better match the declustered input histogram (Figure 

2).  This has little effect on the correlations between variables and individual variable variograms, but 

improves histogram reproduction.   

 

Details of SGS 

Implementation of SGS requires the use of variograms for each PCA variable as well as a number of other 

important parameters.  For all variables considered in this paper, simulation was preformed with 50 

nearby data (25 data and 25 previously simulated nodes).  Parameters for each variogram can be found in 

Table 1.  Because of the large number of variables, variogram fitting software was used with a visual 

assessment to locate any major inconsistencies with data. 

 Declustering was used on the 23 PCA variables to obtain global histograms.  A locally varying 

mean was used in the simulation to consider the nonstationary present throughout the deposit.  The 

mean for each PCA was determined using a moving window average with a radius of 400m in the 

horizontal direction and a 50% anisotropy in the vertical direction.  

 

Modeling 9 grain size variables 

There are three minerals of interest: Brannerite, Coffinite and Uraninite.  The p20, p50 and p80 grain size for 

each mineral has been measured at 497 locations.  There is very little correlation between the minerals 

(Figure 3) so each mineral is modeled independently.  The correlation between the percentiles of each 

grain size (Figure 3) is reproduced by cosimulating the three percentiles.   

 The densely sampled 23 head grade values is used to supplement the lack of information for the 

grain size variables by considering a super secondary variable which is the amalgamation of the 23 PCA 

head grade variables.  This super secondary variable is created differently for each mineral because the 

correlations between the mineral grain sizes and the PCA head grade variables differ.  To generate this 

super secondary variable, a linear combination of the PCA head grades is determined from the following 

equations (similar to paper 302 and a technique that is most often used in Bayesian Updating): 
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Table 1: Variograms for the normal score of the PCA head grade variables.  A nugget (C0) and two 

spherical structures (C1 and C2) were used with no plunge angle. 

Major Minor Vertical Major Minor Vertical

NS:PCA 1 0.11 0.345 0.544 104 -75 118 79 65 100 -86 1141 1556 548

NS:PCA 2 0.035 0.608 0.357 186 83 67 54 63 158 -56 1417 606 482

NS:PCA 3 0.219 0.348 0.432 360 -80 282 110 197 360 -80 294 1193 945

NS:PCA 4 0.212 0.283 0.505 38 -76 314 79 108 349 -82 530 1627 1488

NS:PCA 5 0.292 0.378 0.33 290 -40 166 166 209 290 -40 670 1449 1303

NS:PCA 6 0.081 0.716 0.202 106 -89 59 54 48 113 -68 535 350 192

NS:PCA 7 0.107 0.302 0.59 50 -76 85 44 55 38 -61 716 1571 947

NS:PCA 8 0.168 0.415 0.417 88 -89 101 60 53 106 -79 471 606 247

NS:PCA 9 0.19 0.455 0.356 89 90 80 64 54 109 -69 496 454 237

NS:PCA 10 0.19 0.545 0.266 311 -12 54 62 73 354 -31 398 210 1020

NS:PCA 11 0.216 0.442 0.342 130 -80 96 68 72 130 -80 550 442 284

NS:PCA 12 0.188 0.426 0.386 281 -16 53 57 81 353 -39 296 247 672

NS:PCA 13 0.239 0.376 0.385 21 83 76 50 55 101 -42 446 713 311

NS:PCA 14 0.201 0.544 0.254 214 -2 49 42 61 224 -45 272 169 290

NS:PCA 15 0.451 0.463 0.085 292 -15 104 141 263 283 24 3791 943 25404

NS:PCA 16 0.234 0.561 0.205 23 -83 68 46 55 44 -58 280 280 784

NS:PCA 17 0.465 0.45 0.085 307 -7 99 122 203 283 -81 43720 1311 35267

NS:PCA 18 0.29 0.424 0.286 198 -5 52 52 67 194 -34 999 374 487

NS:PCA 19 0.211 0.559 0.23 100 -70 55 55 47 145 -73 839 220 148

NS:PCA 20 0.195 0.564 0.241 326 -5 53 57 65 5 -16 684 480 1160

NS:PCA 21 0.332 0.627 0.042 280 -20 51 57 70 280 -20 25464 535 8428

NS:PCA 22 0.305 0.25 0.445 294 -30 81 106 157 281 -61 683 683 365

NS:PCA 23 0.598 0.19 0.212 232 70 142 106 132 231 -53 2037 1022 786

Variable Name Azimuth 1 Azimuth 2Dip 1 Dip 2C0 C1 C2
Range 1 Range 2

 
 

The right hand side of this equation contains the correlation between one of the grain size variables and 

the 23 input head grade variables to be merged.  The left hand side is the correlation between all 23 PCA 

head grade variables; note that the left hand side contains 1.0 on the diagonal and 0.0 for all off diagonal 

terms because the PCA values are uncorrelated.  This is done for the p50 value for each mineral and the 

same super secondary variable is used for modeling the p20, p50 and p80.  This single super secondary 

variable allows for the cosimulation of the three percentiles and only one exhaustive secondary variable.  

Without merging all secondary variables into a super secondary, the grain size simulations would have to 

consider 23 separate secondary variables in order to use all the available information from the head grade 

variables.   

 The super secondary variable is used as a collocated secondary variable for each of the grain size 

models.  Note that for the grain size variables neither a logarithmic nor a PCA transformation is 

considered because there are only three variables (p20, p50 and p80) for each mineral.  Cosimulation of 

three variables can be accomplished in a reasonable amount of CPU time.  This procedure is repeated for 

Brannerite, Coffinite and Uraninite.  This includes building a new super secondary variable for each 

mineral.   

 Very few data exist for the grain size variables and the variograms are unstable (Figure 5).  The 

same variograms are used for the p20, p50 and p80 of each mineral.  The spatial structure for the p20, p50 

and p80 are similar (Figure 5); differences are likely due to a lack of data.  Parameters for the variograms 

used are shown in Table 2. 

 

Table 2: Variograms for the grain size data.  A nugget (C0) and two spherical structures (C1 and C2) were 

used with no plunge/dip angle and no horizontal anisotropy. 

Horizontal Vertical Horizontal Vertical

Brannerite 0.4 0.2 0.4 200 20 200 150

Coffinite 0.4 0.2 0.4 400 20 400 300

Uraninite 0.4 0.2 0.4 200 20 200 350

Range 1 Range 2
Variable Name C0 C1 C2
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Modeling 100 association matrix variables 

Modeling the association matrix utilizes a combination of the techniques previously discussed.  The matrix 

is a 10x11 matrix where each row sums to 1.0 (or 100%).  Consider this sample: 

 
Brannerite Coffinite Uraninite Pyrite Chalcopyrite Bornite Chalcocite Other Sulphides Acid Soluble Gangue Acid Insoluble Gangue Free Surface

Brannerite 8.02 88.18 3.80

Coffinite 1.71 1.64 0.25 0.24 3.50 90.67 2.00

Uraninite 23.51 76.49

Pyrite

Chalcopyrite 2.83 2.59 88.43 6.15

Bornite 0.18 0.93 15.50 75.89 7.49

Chalcocite 0.30 0.87 97.91 0.92

Other Sulphides 100.00

Acid Soluble Gangue 0.05 0.02 0.32 0.01 91.16 8.44

Acid Insoluble Gangue 0.04 0.19 0.01 0.08 0.22 0.16 0.02 12.82 86.45  
 

Each element in the matrix represents the % surface area of interaction between minerals determined 

from mineral liberation analysis.  Each row sums to 1.0; however, each column does not sum to a 

constant value as the values are standardized by the proportions.  There are a total of 100 elements in the 

matrix to be modeled, ignoring the diagonals.  An assumption that the rows are independent is made to 

reduce the problem to simulating 10 independent sets (rows) of 10 dependant variables (columns).  To 

maintain the constant sum constraint the logarithmic transformation is applied to each row resulting in 

the need to model 9 logarithmic variables, the logarithmic transform reduces the number of variables by 

1.  The PCA transformation is applied to reproduce the correlation between variables in each row.  The 

principal components of each row are normal score transformed and then simulated with SGS.  There are 

a total of 490 data available for simulation of association variables. 

 As with the grain size variables, the head grade simulations provide a super secondary variable to 

use in collocated SGS.  There are a total of 23 (normal score PCA) head grade simulations to be combined 

into a single super secondary variable for each of the 100 elements in the association matrix.  The PCA 

transform is done in such a way that the amount of data explained by each principal component can be 

measured.  Some components ‘contain’ more information than others.  In this case the first 5 components 

of the head grade realizations contain over 75% of the information in the original head grades.  Only the 

first 5 principal components generated in the head grade modeling are combined into the super 

secondary variable to reduce the computational requirements of the methodology.  Moreover, the super 

secondary variable is only used for the first 4 of the 9 principal components of the association variables.  

Because there are 100 association variables to model, CPU time becomes an issue.   

 A variogram is required for each of the 90 principal components (10 sets/rows with 9 principal 

components in each).  As with the head grade variables these variograms were fit with automatic 

variogram fitting software and visually inspected for inconsistencies. 

 

Special considerations for the association data 

Missing or “null” values always pose a problem in compositional data modeling.  In this instance there are 

some entries that are missing because a particular mineral does not appear in a given sample.  For rows 

that have some missing values but still sum to 1.0, the missing values are reset to 0.0001 or 0.01%.  In 

some cases there are entire rows that are missing.  This is because the mineral does not appear at that 

location; however, in these cases all values cannot be set to a small value as they would not sum to 1.0.  

The solution undertaken in this study was to remove the samples where the entire row was missing.  

When performing SGS at this location the values in that particular row are simulated as if the data did not 

exist (in fact this data does exist and has a value of zero).  There is a miss-match between the missing 

values at this location and the simulated values given the surrounding data.  It is intended that if these 

models are to be used in the future, some type of rock type modeling is preformed.  At these mismatch 

locations the missing minerals have a 0.0 proportion and the mismatched association values are ignored. 

 

Histogram/variogram reproduction 

There are 135 variables modeled in total.  The histogram/variogram reproduction for the first 3 

realizations have been assessed.  The following discussion compares the input histograms and variograms 

to the realization outputs. 
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Head grade variables 

The head grade variables reproduce the histogram quite well (Figure 2) because of post-processing with 

TRANS.  Variogram reproduction is checked in normal score units of the principal components. 

 

Grain size variables 

Histogram and variogram reproduction (Figure 6) is heavily influenced by the secondary variables as there 

was very little grain size data.  For this reason the histogram and variogram reproduction for the grain size 

variables does not exactly match the input.  Moreover, the grain size variables are sparsely sampled 

suggesting that the input histogram and variogram may be unreliable.  Some deviation from the input 

parameters due to the secondary information is warranted. 

 

Association matrix variables 

There are a total of 100 association variables.  Histogram reproduction is not perfect.  The resulting 

histograms and variograms deviate from the input for two reasons: 

1) Lack of independence of the principal components. 

2) Influence of the super secondary attributes on the models. 

The post processing applied to the head grade variables could be applied to the association variables but 

this would be highly CPU intensive. 

Conclusions 

Paper 302 presented three linear regression models for the prediction of plant performance from head 

assay, mineralogy and association variables.  This paper presented a methodology for the spatial modeling 

of these variables.  The intention is to use the models developed in paper 302 from the pilot plant trials 

with the spatial models in this paper to predict plant performance.  The cost of obtaining samples of plant 

performance (i.e. pilot plant runs) is very high.  Building models, such as those presented in paper 302 and 

303, based on the sparse sampling of mineral recovery, acid consumption and work indexes allows for the 

mapping of these variables for all locations in the mine.  This provides an advanced measure of complex 

process based variables that rarely have sufficient data density to generate appropriate variograms and 

prove difficult to effectively model.   

 

 

Figure 1: Left - correlation between the head grade variables.  Right: correlation in one simulation.  

Correlations calculated in original units. 
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Figure 2: Histogram reproduction for 25 head grade variables after post processing.  Black – 3 realizations.  

Red – Input histogram with 7038 data. 
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Figure 3: Correlation between the grain size variables.  Minerals are simulated independently because of 

the small correlation between minerals. 

 
 

Figure 4: Correlation between the grain size variables.  Above – correlations from 497 data to the super 

secondary variables.  Below – correlations from one grain size simulation 
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Figure 5: Modeled variograms for the 9 grain size variables.  The same variogram was used for the 

percentiles of each mineral. 

 
 

Figure 6: Histogram reproduction for grain size variables.  Black – 2 realizations.  Red – Input histogram. 

 


