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Robust Geostatistical Techniques for Large Mine Planning Problems 
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Uncertainty is inevitable with sparse geological data.  Conditional simulation algorithms are geostatistical 

methods used to assess geological uncertainty.  The generated realizations are equally probable and 

represent plausible geological outcomes.  Long-term mine planning and the management of future cash 

flows are vital for surface mining operations. Traditionally the long-term mine plans are generated based 

on an estimated input geological block model.  The most common estimation method used in industry is 

Kriging; however, Kriging results do not capture uncertainty and may be systematically biased.  Mine plans 

that are generated based on one input block model fail to quantify the geological uncertainty and its 

impact on the future cash flows and production targets. 

 

This short note summarized proposed research focused on transferring geological uncertainty into mine 

planning to generate a robust schedule.  Stochastic goal programming techniques will be used to get an 

optimum result.  A number of realizations generated by geostatistical conditional simulation algorithms 

will be used as stochastic part of optimization algorithm.  The size of optimization is very huge and there 

are storage, memory and CPU speed limits to use conventional methods.  These limitations motivate to 

propose some robust and fast simulation algorithms that are used on the fly to optimization problem, 

where no need to save all realization to such a huge file and read again which take too much time. On the 

other there is no any limitation on number of realization and algorithm will generate realization until to 

reach to convergence point or program termination criteria will satisfied.  

 

Spectral unconditional simulation algorithm which is using Fast Fourier Transformation (FFT) will be used 

to generate high resolution unconditional realizations.  To conditioning realizations kriging technique is 

used.  At first realization kriging weight are saved at each grid node therefore at next realization, program 

doesn’t need to solve kriging system and just used previously saved kriging weights.  This method takes 

same time as SGS algorithm for first realization but next realizations are much faster. 

 

Introduction 

Numerical modeling is the only method to quantify geological complexity. A limited number of samples as 

a representation for the Domain of Interest are collected and used to build numerical models. Uncertainty 

is always present with sparse geological data. Geostatistics simulations algorithms are widely used for 

quantify and assess this uncertainty. The generated realizations are equally probable and represent 

plausible geological outcomes.  (Journel and Huijbregts, 1981; Kesler, 1994; Arik, 2002; Journel and 

Kyriakidis, 2004). 

 There are very well established geostatistical methods such as Kriging and sequential simulation 

algorithms; however these techniques are highly dependent on the quality of the variogram model and a 

reliable variogram is difficult to infer in presence of sparse data.  Fair uncertainty predictions and robust 

estimates motivate the quantification and use of variogram uncertainty in estimation and simulation.  

Meanwhile the scale of samples is always different from the scale of the block required for mine planning. 

The vertical data spacing is mostly very dense and the vertical variogram can be inferred easily with little 

uncertainty. The spacing between drill holes is quite large and horizontal variograms are often uncertain. 

To make Kriging system more robust and decrease its sensitivities to variogram, motivate this research to 

find more robust new applicable method that is close to behavior of natural phenomenon. 

 Mine planning is the procedure to find a schedule for a bock model that maximizes the profit at a 

feasible order of extraction. Accurate prediction of mining reserves is crucial for a successful mining 

operation, long-term mine planning and the management of future cash flows that are vital for mining 

operations. Traditionally the long-term mine plans are generated based on an estimated input geological 

block model. The most common estimation method used in industry is kriging; however, kriging results do 

not capture uncertainty and may be systematically biased.  Mine plans that are generated based on one 

input block model fail to quantify the geological uncertainty and its impact on the future cash flows and 
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production targets. The mine planning procedure is not a linear process and the mine plan generated 

based on the Kriging estimate is not the expected result from all of the simulated realizations.  

The aim of this research is to get a more realistic and robust estimation and simulation algorithm and 

transfer geological uncertainty into mine planning. 

 Production scheduling is a critical process in the surface mine planning. Long-term production 

scheduling is used to maximize the net present value (NPV) of the project and focuses on the sequencing 

of materials to be mined in space over time, under technical, financial and environmental constraints. The 

importance of incorporating uncertainty and risk from the technical, geological and mining sources in 

mine production schedules, particularly the possible in situ variability of pertinent orebody grade and ore 

quality characteristics, is well appreciated (Dimitrakopoulos and Ramazan 2004). Discrepancies between 

planning expectations and actual production may occur at any stage of mining. Vallee (2000) reported 

that 60% of the mines surveyed had an average rate of production that was less than 70% of the designed 

capacity in the early years. Others (e.g., Rossi and Parker, 1994) reported shortfalls against predictions of 

mine production in later stages of production. 

 These shortfalls were mostly attributed to orebody uncertainty. Because traditional production 

scheduling methods do not consider the risk of not meeting production targets caused by grade 

variability, they cannot produce optimal results. The detrimental effects of grade uncertainty in optimizing 

open pit mine design are shown in recent studies. Dimitrakopoulos et al. (2002) showed the substantial 

conceptual and economic differences of risk-based frameworks compare to the methods ignoring 

geological risk. Dowd (1997) proposed a framework for risk integration in surface mining projects. Godoy 

and Dimitrakopoulos (2004) presented a new approach for risk-inclusive cutback designs, which yield 

substantial NPV increases. Ravenscroft (1992) discussed risk analysis in mine production scheduling, 

where the use of stochastically simulated orebodies showed the impact of grade uncertainty on 

production scheduling. Ravenscroft concluded that conventional mathematical programming models 

cannot accommodate quantified risk, thus there is a need for a new generation of scheduling 

formulations to overcome infeasible or unrealistic scheduling and account for production risk. Smith and 

Dimitrakopoulos (1999) showed additional examples using mixed-integer programming to verify the 

above conclusion in the context of shortterm planning. Kumral and Dowd (2001) used stochastic 

simulations and optimization in short-term planning. Past efforts to deal with uncertainty attempt to 

sequentially link stochastic orebody models with conventional optimization formulations, with the 

exception of Godoy and Dimitrakopoulos (2004). This sequential process is inefficient and, although it 

assesses risk in a schedule, it does not produce optimal scheduling solutions in the presence of 

uncertainty. In addition, these efforts do not consider multi-element deposits with complex ore quality 

constraints, such as nickel laterites, iron ore or magnesium deposits. Furthermore, dealing with orebody 

uncertainty needs to consider issues of equipment access and mobility in the related “stochastic” 

optimization formulations.  

 

Common Geostatistical Techniques for Resource Evaluation and Uncertainty Assessment 

There are many of geostatistical techniques available for resource evaluation and uncertainty evaluation ( 

Journel, 1989; Cressie, 1993; Deutsch and Journel, 1998; Deutsch, 2002). Among these techniques the 

most popular are Kriging and Simulation. Both of these techniques are briefly described below. 

 

Kriging is a well established linear estimation technique that provides an estimate of the unsampled value 

Z(u) as a linear combination of neighboring observations 
iZ( ), i=1,…,n( )u u   

The Simple Kriging estimator predicts the value of the variable of interest as the following linear 

combination 

                                                    

( )n

SK i i

i=1

Z* ( )= λ ( )Z( )∑
u

u u u

                                                       

(1) 

where 
T

1 n( )=(λ ( ),…,λ ( ))
u

λ u u  denotes the vector of the Simple Kriging weights calculated from the 

normal system of equations for the estimation location u 
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n( )

i i j j

i=1

λ ( )Cov(Z( ),Z( ))=Cov(Z( ),Z( )), j=1, ,n( )∑
u

u u u u u u…

                     (2) 

where 
i jCov(Z( ),Z( )), i,j=1, ,n( )u u u…

 denotes data-to-data covariance function and 

jCov(Z( ),Z( )), j=1, ,n( )u u u…
 is data-to-estimation point covariance function. The covariance function is 

a required parameter in geostatistics and is calculated under stationarity though the semivariogram 

model.  Simple Kriging is the best linear unbiased estimator, that is, it provides estimates with minimum 

error variance 
2

SKσ ( )u  in the least square sense given by 

n( )
2 2

SK i j

i=1

σ ( )=σ - λ ( )Cov(Z( ),Z( ))∑
u

u u u u                                         (3) 

where 
2
σ  is the population variance.   Kriging is Best Linear Unbiased Estimation (BLUE) in the sense of 

least square error for a given covariance model. Kriging estimates produce have smoother distribution 

than original data and the covariance between estimated values is not reproduced. Also, kriging variance 

is independent of the data values and only provides a comparison of alternative geometric data 

configuration and due to proportional effect (Heteroscedasticity) at data values in original units, kriging 

variance is usually not measures of local accuracy.  

 

Stochastic Simulation 

Stochastic simulation is widely used to quantify uncertainty in mineral resources (Journel, 1974). 

Stochastic simulation is the process of building alternative, equally probable, high-resolution models of 

spatial distribution of Z(u) (Deutsch and Journel 1997). The realizations reproduce the data values at their 

locations and given covariance function. 

 There are many approaches that can be used for geostatistical simulation. The most popular and 

simplest simulation techniques for continuous variables are based on the assumption of multivariate 

Gaussianity. The multivariate Gaussian distribution is characterized by the property that all conditional 

and marginal distributions are also Gaussian. The simple kriging mean and variance are precisely the 

mean and variance of the local conditional distribution. 

 It is rare, however, that a geological variable is Gaussian; therefore, the data need to be 

transformed before analysis. Simulation is conducted in normal score or Gaussian units. When stochastic 

simulation is completed, the simulated values are back-transformed into original units.  There are many 

algorithms for Gaussian simulation. These include sequential Gaussian simulation, matrix approaches, 

moving average, turning bands and spectral methods.  

 

Proposed Methods and Research Plan 

Long-term mine planning and the management of future cash flows are vital for mining operations. 

Traditionally the long-term mine plans are generated based on an estimated input geological block model. 

The most common estimation method used in industry is kriging; however, kriging results do not capture 

uncertainty and may be systematically biased.  Mine plans that are generated based on one input block 

model fail to quantify the geological uncertainty and its impact on the future cash flows and production 

targets. The mine planning procedure is not a linear process and the mine plan generated based on the 

Kriging estimate is not the expected result from all of the simulated realizations. Generated realizations 

will be used to get more robust mine planning.  Goal programming algorithms will be applied to all 

realizations at once to reach a target production with minimal variations.  

 Goal programming is a method of optimization to maximize (or minimize) a function and 

commonly used when multiple goals are often in conflict with each other. With multiple goals, all goals 

usually cannot be realized exactly. For example, the twin goals of getting maximum profit with minimum 

risk are generally incompatible and therefore unachievable. Goal programming does not attempt to 

maximize or minimize a single objective function as does the linear programming model. Rather, it seeks 

to minimize the deviations among the desired goals and the actual results according to the priorities 

assigned. The objective function of a goal programming model is expressed in terms of the deviations 

from the target goals, in mine planning case target production.   
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 A set of robust methods for geostatistical modeling will be developed and used in stochastic goal 

programming techniques to get a robust optimum mine planning schedules, where multiple objectives are 

satisfied such as:  

 

• Maximum profit or net present value (NPV) 

• Minimum deviation from target production 

• Considering Ergodic fluctuation of variables at a jointly uncertainty manner 

 

Spectral simulation algorithm is used to generate unconditional realization, by using FFT method; a very 

high resolution grid can be simulated very fast. Kriging is used for conditioning. To increase speed of 

algorithm, kriging weights are saved at a binary file at first realization. Kriging weights will not change for 

a particular location at different realizations. Therefore for next realizations only a vector to vector 

Multiplication needs to make unconditional simulation to be conditioning.  

 Because stochastic goal programming techniques are applied to each of realization to satisfy 

multiple objectives, no simulation realization is saved on a file. This method increases the speed of 

algorithm very efficiently. Reading and writing to the files take too much time. On the other hand, 

optimization algorithm will stop at some specific stop criteria that user selected. Therefore both of 

simulation and optimization parts need to run simultaneously until objective functions are satisfy.  

 A Multi-process program code is a very good idea to generate realization and do optimization on 

the fly. This is very effective with dual (or more) core CPUS, while the fist one is working on generating 

realizations the second one working on optimization procedure. Also there isn’t any limitation on number 

of realizations because it is on the fly and no need for saving any high resolution grid nodes. 

 

Spectral simulation method 

The Spectral simulation algorithm is wildly used at electrical engineering to generate a random field with a 

given covariance spectrum (Borgam, Taheri and Hagen, 1984; Gutijahr and others, 1978; Navels, 1993; 

Gutjhar,Bullerd and Hatch, 1994, 1997). The algorithm is efficiently fast when based on Fast Fourier 

Transformation (FFT). (McKay,1988; Pardo- Igúzquiza and chica-Olmo, 1993).  

 According to classical spectral representation theorem, any sequence of N values of z(k) can be 

expressed as a finite series of Fourier coefficients, ,i ia b . In 1D, that series is written as, Bracewell 

(1986):  

                                     ( ) ( ) ( )
1

0

cos 2 sin 2

0, , 1

N

i j

j

z k a jk N b jk N

k N

π π
−

=

 = + 

= −

∑

…

                                 (11)  

Or, equivalently, using a complex exponential Fourier series:  

                                               ( ) ( )( ) ( )
N-1

-1 i2πkj N

j=0

z k =F A j = A j e∑                                                   (12) 

Where ( ) ( ) ( )i j

j jA j a ib A j e
ϕ

= − =    is the jth complex Fourier coefficient, ( ) 2 2

j jA j a b= +  is the 

amplitude , and ( ) ( )1tan /j ij b aϕ −= −  is the phase of the jth Fourier coefficient. The amplitudes are 

related to the discrete spectral density s(j).  FFT is used to transfer covariance function to spectrum (Yao, 

1998b).   

                                                                        ( )( )( ) Zs j F C h=                                                      (13) 

Spectral simulation does not call for any analytical variogram model as most other simulation algorithms 

do. The spectrum density map can be obtained directly by FFT of experimental covariance map (Yao, 

1998b) or directly from data values by using the Lomb periodogram method.  

 For a data obtained at equal space intervals, Fourier based methods are applied to get spectrum 

density. The Lomb periodogram (Lomb, 1975 and Scargle 1982) has been proposed for processing of 

irregularly sampled data. Its successful application to detecting periodicities in data and to estimating the 

spectral density of deterministic signal has been reported in literature (see, e.g. Green et al., 2002, 
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Kaneoke and Vitek, 1996, Fortin and Mackey, 1999, and Laguna et al., 1998).  This can be lead to proposed 

automatic simulation algorithm that does not need to variogram model. 

 

Stochastic Goal programming 

Rather than using a typical "best guess" method, the idea behind goal programming is to find solutions 

that best satisfy an established list of prioritized objectives. One of these objectives might be a profit 

requirement, while others might arise from social and environmental concerns, productivity targets, use 

of financial resources, meeting marketing goals, and so on. By utilizing the power of goal programming, it 

is possible to find a solution that best satisfies the conflicting goals of the organization and comes closest 

to meeting the stated goals. 

 Goal programming is a branch of multi-objective optimization, which in turn is a branch of multi-

criteria decision analysis (MCDA), also known as multiple-criteria decision making (MCDM).  It can be 

thought of as an extension or generalization of linear programming to handle multiple, normally 

conflicting objective measures. Each of these measures is given a goal or target value to be achieved. 

Unwanted deviations from this set of target values are then minimized in an achievement function. 

 Stochastic programming is the study of procedures for decision making under uncertainty. The 

aim of stochastic programming is to find optimal decisions in problems which involve uncertain data. The 

fundamental idea behind stochastic linear programming is the concept of recourse. Recourse is the ability 

to take corrective action after a random event has taken place.  

In the simplest model of this type we have two stages:  

� In the first stage we make a decision  

� In the second stage we see a realisation of the stochastic elements of the problem BUT are 

allowed to make further decisions to avoid the constraints of the problem becoming infeasible.  
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