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Multivariate Change of Support 
 

John G. Manchuk and Clayton V. Deutsch 

 

Statistics depend on volume and this concept is significant for correctly describing natural resource 

properties.  The mean, variance, distribution shape and variogram all depend on scale and this is described 

by change of support models.  They are utilized to acquire the statistics at a scale that has not been 

sampled from a set of data at an often significantly smaller scale.  Methods concentrate on the univariate 

statistics, but as more data is incorporated into geostatistical modeling projects, multivariate workflows 

are being considered.  However, change of support for multivariate distribution models and linear models 

of coregionalization has not been developed.  This work develops an approach for multivariate change of 

support for variables that average arithmetically.  Results show the method preserves the mean as with 

existing univariate models and also achieves good results in terms of variance reduction for the 

multivariate covariance matrix. 

 

Introduction 

An important consideration in any modeling application is the size or scale of modeling elements or 

blocks.  This scale sometimes referred to as the selective mining unit (SMU) is much larger than the 

samples from exploration and delineation, which may be in the form of chip samples, rock core, trench 

samples, or other forms.  Generating a model at the scale of samples is unreasonable for computational 

reasons and selectivity reasons – surface mining equipment and underground stopes are substantially 

larger.  However, generating models at the SMU scale requires statistics from data at the same scale and 

this is never available.  Change of support models were developed for this purpose, to access data at the 

SMU scale based on data available at the much smaller sample scale. 

 Existing change of support models are useful for one variable, but many application involve 

multiple variables and these models do not necessarily honour the relationships across scales.  

Multivariate modeling applications involve correlations and spatial covariance structures that rarely 

exhibit independence rendering univariate change of support unusable.  A method has been developed to 

construct a multivariate change of support model that is formulated to depend on the modeling 

procedure used.  If the modeling procedure and all associated statistics are deemed correct, then the 

resulting change of support model will be equally acceptable.  The general workflow involves constructing 

high resolution multivariate models, block averaging results to the SMU scale, and creating a vector field 

from the results that defines how the distribution changes from the sample scale to the SMU scale.  This 

model can then be used to correct sample scale realizations generated on the SMU scale grid. 

 

Background 

Univariate change of support models attempt to define the distribution of a property such as mineral 

grade at a block scale v based on sample data having a much smaller scale.  For practical purposes, the 

sample scale is assumed to be a point rather than a volume.  Assuming they form a stationary random 

function (SRF), the samples Z(x) follow a distribution function f(z), but what is required is the distribution 

function, fv(z), of a SRF, Zv(x), at scale v, with no prior knowledge of what the properties of the larger scale 

data and distribution are.  There is a set of conditions (Chiles and Delfiner, 1999) that control fv(z) for 

SRF’s that scale arithmetically: 

1. The mean does not change with scale: { } { }v
E Z E Z=  

2. The variance is defined by (1), where x and y are spatial locations and C is the covariance function 

that describes Z at point support. 
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2

1
( )v

v

C x y dxdy
v

σ = −∫∫  (1) 

3. fv(z) is less selective than f(z), i.e. the variance does not increase, the range decreases, and the 

distribution undergoes some degree of symmetrisation. 
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Using these rules, various change of support techniques can be applied to derive a function that relates 

point scale values to their block scale equivalent.  The usefulness of such a function is found in cases 

where point scale samples cannot be upscaled to the block scale, which occurs for two main reasons: the 

number of upscaled samples is inadequate to infer important statistics like the variogram; and/or point 

scale samples do not effectively discretize blocks resulting in unreliable upscaled values.  Point scale data 

are instead used directly in estimation and simulation applications and results are transformed to reflect 

the appropriate block scale using a change of support model.  Some models used in practice include affine 

correction, indirect lognormal correction, which are described by Isaaks and Srivastava (1989) on pages 

471-476, and the discrete Gaussian model, described by Chilès and Delfiner (1999) on pages 432-433. 

 Change of support models have not been developed for multivariate data, but similar rules and 

concepts apply.  The SRF is now a vector valued function, Z(x), with a density function defined by 

f(z1,z2,…zm) where m is the number of variables being considered.  Mapping point scale values z(x) to block 

scale values zv(x), a set of rules similar to point scale applies: 

1. The mean of all marginal distributions does not change with scale: { } { }, 1,...,k k

v
E Z E Z k m= =  

2. The covariance matrix is defined by (2), where x and y are spatial locations and Cij is the 

covariance function between Zi and Zj at a point scale.  If a valid linear model of coregionalization 

(LMC) is used, Σ will be positive definite 

 
2

1
( )ij ij

v

C x y dxdy
v

∑ = −∫∫  (2) 

3. fv(z1,z2,…,zm) is less selective than f(z1,z2,…,zm) 

4. The correlation matrix is defined by (3).  For an LMC that uses identical covariance functions and 

when all ratios between variance contributions and respective sills are constant, the correlation 

coefficients are independent of scale.  Otherwise, they depend on differences between the 

covariance models. 

 ( )1/2 1/2
/ij ij ii jjR = ∑ ∑ ⋅∑  (3) 

These rules provide only targets for statistics that describe the global distribution of a variable or set of 

variables.  Also important is the distribution shape, and this is controlled by the sample data and their 

spatial orientation.  In the previously mentioned existing methods for change of support, assumptions 

must be made about the distribution shape.  Affine correction assumes the shape of f(z) and fv(z) are 

identical; Indirect lognormal correction assumed both distributions are approximately lognormal; for the 

discrete Gaussian model, it is assumed that the distribution between Z and Zv is bivariate Gaussian.   

 Applying the affine correction to multivariate data is accomplished by (4), where μ is the mean 

vector, U
1/2

 is a diagonal matrix of standard deviations derived from Σ, and V
1/2

 is a diagonal matrix of the 

standard deviations of Z.  Through this mapping, the desired variances are achieved, the marginal 

distribution shape is retained, and the correlation matrix does not change with scale.  The last point is 

proved below in (5), where ρ is the correlation matrix of Z, and the covariance of Zv was derived from (6).  

For LMC specifications that do not result in a change in correlation coefficients, this model is acceptable; 

in all other cases (Oz and Deutsch, 2000) this method will depart from the target correlations from (3). 
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Results from a simple example using two variables and random samples are shown in Figure 1.  Variable 

one was generated with a mean of 3 and a variance of 2 and variable two was generated with a mean of 5 
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and a variance of 1 and a covariance between them of 1.1.  Affine correction was used to reduce the 

variance by a factor of 4.  Statistics for the sample data from before and after are provided in Table 1. 

Table 1: Statistics for affine correction example 

Statistic Before After 

Mean [ ]2.992 5.018  [ ]2.996 5.009  

Covariance 
2.084 1.153
1.153 1.031
 
  

 
0.521 0.288
0.288 0.258
 
  

 

Correlation 
1 0.787

0.787 1
 
  

 
1 0.787

0.787 1
 
  

 

 
Figure 1: Results of affine correction: dashed line – original distribution; solid line – affine corrected 

distribution; gray plus signs – original sample pairs; black bullets – affine corrected sample pairs. 

The simplicity of affine correction allows a straightforward extension to multivariate applications; 

however, the goal of incorporating more variables into modeling applications is to achieve more accurate 

models and improved estimates of uncertainty.  The affine correction may do just the opposite if the 

incorrect multivariate relationships are achieved with its implementation.  A more advanced method is 

required to account for the statistics and for the spatial orientation of the data. 

 

Methodology 

Working with multivariate data having potentially complex relationships and LMC specifications, 

development of theoretical change of support techniques becomes a challenge.  A somewhat brute force 

approach to the problem is to use the same workflow as the modeling process will use; therefore all 

sample data, input parameters and the spatial context will be problem specific.  Resulting change of 

support models will be applicable to the problem at hand.  In summery, the approach uses simulation to 

generate point scale fields that are used in an upscaling process to acquire block support data from which 

a change of support model can be derived.  Although in the past this approach has not been advocated, 

today’s computational resources make it feasible. 

 Advantages of using simulation include: the domain of interest is used directly; the distribution 

and spatial orientation of sample data are used; and the variogram or LMC are incorporated.  Programs 

and code already exists for multivariate simulation.  The problem is generating a mapping between the 

point scale data and block averaged data from simulation, especially when the dimensionality of the data 

becomes high.  Resulting change of support models must also meet the requirements laid out in the 

previous section: constant mean; covariance matrix defined by (2); correlations defined by (3); and less 

selectivity.  Methods for computing the targeted covariance and correlation matrix already exist, but only 
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for a single covariance function.  Extending the basic discretization technique to incorporate an LMC is 

straightforward, there are simply more variogram models. 

 In practice, change of support models are applied to point scale values simulated at block 

centers; therefore deriving a model is done via the same process.  The targeted scale is the volume of 

blocks in the simulation grid, which will be referred to as the coarse grid.  These must be discretized into a 

set of fine scale blocks for which point scale simulation is carried out.  To be consistent with the 

application of change of support models, the set of fine scale blocks should be defined so that block 

centers of both grids align, see Figure 2. 

 
Figure 2: Target grid and discretization 

Performing simulation on the discretization provides point support values and arithmetically averaged 

block scale values derived from them.  A link between the two scales is made using difference vectors 

calculated from ,1 ,2 ,
ˆ ( ) ( ) [ ]v v v v m− = ∆ = ∆ ∆ ∆z x z x z z z z⋯ , where a hat indicates the block averaged 

value is computed from samples and is an approximation.  There will be as many vectors as coarse grid 

blocks for a single realization; however, it is possible to obtain additional vector sets through the use of 

grid offsets.  Keeping the fine grid fixed and offsetting the coarse grid yields another set of point support 

values and block averages, see Figure 3. 

 
Figure 3: Example of grid offsetting 

Difference vectors can be considered samples of the gradient from some underlying function g(z).  By 

developing a model for g(z) and ensuring that it is differentiable, or for /g∂ ∂z directly, any point scale 

value z can be mapped to the appropriate block scale value via /v g= + ∂ ∂z z z .  Instead of attempting to 

solve the differential equation problem for g(z), this work will only model the gradient data directly using 

simple interpolation techniques.  The former may be considered in future research. 

 The problem is to solve for a gradient field that maps any point scale realization to a block scale 

realization such that the mean is constant and the appropriate change in variance is achieved.  The 

gradient field is the change of support model.  Simulation and block averaging provides data, ∆z , from 

which the field is derived.  Gaussian weighting is used to interpolate the value of ∆z vector sets to a set 

of lattice points that covers the multivariate distribution f(z).  In practice, the limits of a distribution are 

known, for example mineral grades are non negative and less than some sampled or extrapolated 

maximum grade.  These define the extents of the lattice.  The interpolated value for a particular lattice 

point is given by (7), where wi are the weights, W is the sum of the weights, Ωk is the local neighbourhood 

of kz , di is the distance between kz  and iz , 
2k i−z z , and αk and βk are shape parameters. 

 

( )( )2 2

1
ˆ

exp /
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k
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∆ = ∆

= − −

∑z z
 (7) 
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Each fine scale realization will yield a realization of difference vectors and therefore a different change of 

support model.  In geostatistics, one purpose of multiple realizations is to obtain the most likely value, or 

the expected value, of some property.  The same principle applies to developing the most likely change of 

support model for the data, domain, and modeling parameters.  Multiple realizations of change of 

support models are averaged to obtain the one that will provide the correct mean and covariance of 

future realizations.  Denoting the lattice of difference vectors LI, where I is a multidimensional index, the 

expected change of support model is given by (8) with r being the number of realizations.  If nr multiple 

grid offsets are used, the number of accessible realizations is rr n⋅ . 

 { } ,

1

1 r

I I r I

k

E L L L
r =

= =∑  (8) 

Future realizations generated at a point scale on the coarse grid block centers are mapped to the 

appropriate scale using
I

L and the same interpolation method as in (7). 

 

Implementation 

The above methodology is tested on two cases: 1 – bivariate unconditional Gaussian realizations with 

single structure direct and cross variograms; 2 – the same as previous but involving data transformations.  

Both cases are applied on a two dimensional Cartesian grid and the following items are checked: 

theoretical variances from evaluating (2); the change of support model; realization maps; and point and 

block scale distributions and associated statistics. 

Case 1 

Bivariate LMC parameters are defined in Table 2.  Both variables are assumed Gaussian with zero mean 

and unit variance and a correlation of 0.7.  The change of support model was generated using a small 10 

by 10 coarse scale grid and the corresponding fine scale grid was designed to give 11 by 11 points per 

coarse scale block, see Table 3.  10 realizations were used with no grid offsets.  Evaluating (2) numerically 

using the same discretization, and using 51 by 51 points for comparison, yields the symmetric covariance 

matrices in Table 4.  In this case, there is no change in the correlation coefficient with scale. 

Table 2: LMC for case 1 

Structure 
Head 

variable 

Tail 

variable 
Variance Azimuth 

Major 

range 

Minor 

range 

Nugget   0    

Spherical 1 1 1 45 50 15 

 1 2 0.7 45 50 15 

 2 2 1 45 50 15 

 

Table 3: Grid specifications for case 1 

Grid Axis Number Origin Size 

Coarse 
x 10 5 10 

y 10 5 10 

Fine 
x 110 0.45… 0.90… 

y 110 0.45… 0.90… 

 

Table 4: Theoretical covariance matrices for case 1 

11 by 11 points 51 by 51 points 

0.654812 0.458369
0.654812

 
  

 
0.653556 0.457489

0.653556
 
  

 

The bivariate distribution was discretized into a 20 by 20 grid.  A few iterations were carried out to 

optimize the parameters for the neighbourhood size and Gaussian kernel variance by hand.  Using the 

nearest 15 points to define Ωk and a variance of 
2

/ 4
k

r , the error between the theoretical covariance 

matrix and that achieved using the change of support model was small.  Figure 4 shows the resulting 
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change of support model as a vector field.  All vectors converge to the mean and the field appears 

symmetric as should be the case for a bivariate Gaussian distribution. 

 Testing of the model was done using a 50 by 50 grid with the same block dimensions as the 

coarse grid used to generate it.  50 realizations of point scale values were generated and transformed 

according to ˆ ( ) ( )v = + ∆z x z x z , where ∆z is interpolated from the change of support field.  Resulting 

statistics averaged over all realizations at the point scale and block scale are provided in Table 5.  A 

realization for both variables and scales is in Error! Reference source not found..  Considering that the 

change of support model was built without any constraints on the mean and covariance matrix, results 

are encouraging: the mean for both variables stayed very close to zero and the reduction in variance is 

close to 0.65 as dictated by the theoretical values calculated from Table 4.  The covariance between 

variables contains more error with a reduction of only 0.58 rather than 0.65.  This has the effect of a lower 

correlation of 0.638 instead of 0.7. 

 
Figure 4: Bivariate change of support 

model for case 1 

Table 5: Case 1 point and block scale statistics 

Statistic Point scale Block scale 

Mean [ ]0.0094 0.0072  [ ]0.0032 0.0051−  

Covariance 

0.99649 0.69693
0.99222

 
  

 

0.64197 0.40790
0.63561

 
  

 

Covariance 

reduction 
 

0.64423 0.58528
0.64059

 
  

 

Correlatio

n 
0.70073 0.63832 

 

 

 
Figure 5: Results for case 1 realization 5 change of support: dashed line – original distribution; solid line –

corrected distribution; gray plus signs – original sample pairs; black bullets –corrected sample pairs. 

 

Case 2 

Variables are often never standard Gaussian so this case involves data transformations to convert a set of 

Gaussian realizations to those of a more realistic distribution.  For example, low valued positive variables 

like gold grade might appear to follow a lognormal distribution.  The same realizations used in Case 1 

were transformed into lognormal distributions using (9), where Y represents the Gaussian values.  The 
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mean and variance of both variables are the same and are determined by (10) and (11) and the 

covariance is defined by (12).  To evaluate the theoretical covariance matrix at the block scale the LMC for 

the lognormal data are required; however, only the Gaussian variograms have been defined.  These are 

converted according to (12) as well, but Cov(Z) and Cov(Y) are replaced by covariance functions that are 

defined by the LMC.  The correlation coefficient is no longer constant and is defined by (13) at the point 

scale; it is computed numerically for the block scale along with the covariance matrix in Table 6.  The 

mean should remain constant since arithmetic averaging is used. 

 ( )exp 0, 1 / 2α β α β= + ⋅ = =Z Y  (9) 

 ( )2exp / 2 1.13314m α β= + =
Z

 (10) 

 ( )( )2 2 2
exp 1 0.36470mσ β= − =

Z Z
 (11) 

 ( )( )2

1 2Cov( ) exp Cov( ) 1 0.245561Z Zm m β= − =Z Y  (12) 

 
( )

( ) ( )

2

1, 2

1, 2
2 2 2 2

1 2

exp 1
0.673342

exp 1 exp 1

Y Y

Y Y

Y Y

β σ
ρ

β σ β σ

−
= =

− −

 (13) 

 

Table 6: Theoretical covariance matrices and correlations for case 2 

 11 by 11 points 51 by 51 points 

Covariance 

matrix 
0.230215 0.156758

0.230215
 
  

 
0.229747 0.156445

0.229747
 
  

 

Correlation 

coefficient 
0.680922 0.680945 

 

As before, a few iterations were used to optimize the parameters and it was found that using the nearest 

12 points to define Ωk and a variance of 
2

/ 8
k

r , the error was roughly minimized.  Figure  shows the 

resulting change of support model, which is roughly symmetric and shows convergence to the mean.  

Gaussian realizations on the 50 by 50 grid were converted to lognormal using (9) and transformed 

according to the change of support model.  Resulting statistics are given in Table 7 showing almost no 

change in the mean and the covariance is similar to the results from Table 6.  The covariance reduction 

calculated using Table 6 and the values from equations (11) and (12) is roughly 0.63 for all terms.  As in 

case 1, the largest departure is observed with the off diagonal term having a reduction factor of 0.60.  

Resulting distributions are shown in Figure .  Realizations are identical to those of Error! Reference 

source not found. when back-transformed using (9) and are not shown. 

 
Figure 6: Bivariate change of support 

model for case 2 

Table 7: Case 2 point and block scale statistics 

Statistic Point scale Block scale 

Mean [ ]1.1387 1.1363  [ ]1.1309 1.1394  

Covariance 
0.37035 0.24781

0.36195
 
  

 
0.23505 0.14870

0.22216
 
  

 

Covariance 

reduction 
 

0.63467 0.60006
0.61379

 
  

 

Correlation 0.67668 0.65039 
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Figure 7: Results for case 2 realization 5 change of support: dashed line – original distribution; solid line –

corrected distribution; gray plus signs – original sample pairs; black bullets –corrected sample pairs. 

 

Conclusions 

Multivariate change of support is an important problem in mining applications when several variables are 

involved and they show correlation structure that cannot be overlooked.  For example, different variables 

may impact ore processing in various ways – incorrectly categorizing SMU’s because change of support 

was not implemented to account for correlation could lead to adverse effects or monetary losses.  

Correctly scaling all targeted variables for production is important for resource valuation purposes as well.  

Presented in this work was a fairly general technique for multivariate change of support.  It was shown to 

be applicable in the Gaussian case and the lognormal case.  If any distribution model is available for use in 

multivariate simulation this method can be implemented.  One potential issue is dimensionality – the size 

of the change of support model grows rapidly with the number of variables, for example, 6 variables and a 

grid with 20 nodes per dimension requires 64 million vectors.  More advanced modeling techniques to 

represent the multivariate distribution and the vector field will be required for such cases. 
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