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Optimal Correction of Indefinite Correlation Matrices 
 

Abhay Kumar and Clayton V. Deutsch 

 

Correlation matrices must be positive semi definite, but sometimes unavailability and/or erroneous data 

produces indefinite correlation matrices. Some methods are presented to correct an indefinite correlation 

matrix to the nearest positive definite one so that geostatistical calculations can be performed. 

Uncertainty in the correlation coefficients can be handled by associating weights to them.  These weights 

determine the relative change in the individual elements of the initial correlation matrix. 

 

Introduction 

 

Correlation matrices are built to describe the dependency between different data sets. In reservoir 

estimation the primary well data, which is expensive to obtain by means of drilling is predicted using the 

easy and cheap obtaining secondary seismic data. Generally linear model of coregionalization (LMC) is 

used to estimate the primary variable by means of secondary variable (s). Even selecting the positive 

semi-definite variogrma models for primary and secondary variables doesn’t guarantee that the 

Correlation matrix of whole system is positive semi-definite (for details see [5]). Generally seismic data are 

available in abundance but the primary well data are not. A correlation matrix formed with some missing 

primary data can result in an indefinite matrix. Even error in a single element of 100 x 100 correlation 

matrix can give an indefinite matrix.  

 In order to overcome this problem one can find the error full elements of the correlation matrix 

and change only these elements to fix the problem. But this is not a good idea because the resulting 

matrix can be far from the original matrix in terms of matrix norm. To get the optimal positive definite 

correlation matrix all non-diagonal elements of matrix must be allowed to change. At the same time the 

relative change in the individual elements of the matrix must be controlled since we may be confident 

about some elements, that they are correct one and should be allowed to change minimum. This 

objective can be achieved by introducing an appropriate weighting matrix to reflect the uncertainty in 

each element of the original correlation matrix. In this paper two main algorithms which are adapted  

from Higham [1] and Pietersz & Gorenen [1],are presented herein with some modifications necessary to 

handle problem of indefinite correlation matrices in geostatistics. The latter algorithm is able to handle 

the general weights applied on the individual elements of the matrix.  The objective is to minimize the 

“weighted Frobenius norm” i.e. 
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The unweighted Frobenius norm is the special case of (1) when weight matrix 1ijw = i.e. all elements 

have same weight. The problem of finding optimum nearest positive definite matrix can be stated as 

follows: 
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The objective function is just double of square of weighted Frobenious norm (1), thus minimizing (1) is 

same as minimizing (2). 

 

Literature Review: 

There are various papers on finding the solution of (2). Some of them can handle general weights and 

some cannot. The projection method has been presented in Higham, 2002. The fact that both sets C and P 

are closed convex sets, gives the idea that there is a unique optimal solution for this problem [1]. The 

nearest optimum matrix to R will be a positive semi definite matrix with number of eigen values equal to 

0 is same as number of negative eigen values of R. The uniqueness of optimal solution has been explained 

in this paper. The main drawback of algorithm explained in Higham’s paper is that it is unable to handle 

general weights. The second method based on Majorization approach has been developed by Pietersz and 

Groenen [2]. This algorithm has ability to handle general weights. Numerical tests on various indefinite 

correlation matrices with equal weight matrix conforms that both algorithms give the same optimal 

solution.  

 

Methodology: 

For weighted matrix norm 

Using the fact that if X  is a symmetric positive definite matrix, there will be one and only one matrix 
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Then each element of matrix X can be expressed as: 

, , 1, 2,.....ijx i j n=< >= =T
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Then problem (2) can be expressed as: 
n n

Find X
×

∈ℝ  

2

1 1

: *( )
n n

ij ij

i j i

to minimize w r
= = +

− < >∑∑ i jy , y                  (4) 

:|| || 1, 1,2,....
F

Subjected to i n= =
i

y  

[ ] *[ ]T
X = T T T T T T

1 2 n 1 2 ny , y , ............, y y , y , ............, y  

This is a type of constrained optimization problem. The method of Lagrange Multipliers will generate the 
2n simultaneous equations in degree 3, which is very difficult to solve. This method has been explained by 

Zhang & Wu (2003) and Wu (2003) and theoretically guarantees the global convergance, but associated 

algorithm does not guarantee the same and is not good in practice. 

The majorization approach has been used by Pietersz & Groenen (2004) to solve (4). Majorization is an 

iterative algorithm and when applied guarantees the convergence. The approach is simple: suppose we 

want to minimize a complex function ( )f x . The first step is to find a simple function ( )g x which is equal 

to f at 
( )k=x x (

thk iterative stage) and greater than or equal to elsewhere i.e. 
( ) ( )

( ) ( )
k k

g f=x x and

( ) ( )f g≤x x . Then find the minimizer *x of ( )g x  and iterate again using 
( 1) *k+ =x x by establishing 

new ( )g x . This algorithm has a decent property because after each iteration the function value is 
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guaranteed to be smaller. The globally convergence of this algorithm has been explained by Pietersz & 

Groenen (2004). 

Objective function can be written as: 

2 2 2
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where,  1=
T

y y  

( )f y is a quadratic function of y . This way the original problem (4) can be subdivided into several 

constrained quadratic optimization problems in different ' sy . Before going into the details of subdividing 

(4) let us look at the method of optimization of a quadratic function by majorization. 

3.1.1 Optimization of quadratic objective function subjected to unit norm constraint by majorization: 

In this section an iterative algorithm will be developed to find the optimal of quadratic objective function. 

To generalize the method, standard notations (independent of other sections) have been used. This 

algorithm can be used on any type of quadratic objective function with unit norm constraint and it 

guaranties the convergence. The problem formulation is as follows: 

Find:
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The first idea to solve this problem will be by approach of Lagrange multipliers. But the partial derivatives 

of Lagrange function will generate a system of simultaneous equation in x of degree 3. To avoid the 

complexity of solving the huge number of 3
rd

 degree simultaneous equation we are using the majorization 

technique. Suppose we are at iteration-k, the current iteration poin is 
( )kx , we need to find such ( )g x so 

that 
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g f and f g for all= ≤ ∈x x x x x ℝ . If λ is the largest eigen value of matrix 
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n

Q Iλ− will be negative semi definite, therefore for any vector 
( )( )k

−x x : 

( ) ( )( ) ( ) ( ) 0k T k

nQ Iλ− − − ≤x x x x
 

After some manipulations and using the fact that 1=Tx x and 
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T
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Therefore objective function of (7) can be written as: 
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( ) ( )( ) 2 ( ) Constantk k

kg b Qλ= − + − +T
x x x x      (8) 

Thus we are always able to find a linear function in x at each iteration. Then we need to find the 

minimizer of following objective function: 
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Minimize: ( )
k

g x          (9) 

Subjected to: ( ) 1 0h = − =
T

x x x  

This is a straight forward constrained problem and the Lagrange function can be written as: 

( , ) ( ) (1 ),k kl d g d= + − T
x x x x    d is the Lagrange multiplier. 

Partial derivatives of Lagrange function with respect to x and d will give the solution: 
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The algorithm is summarized below: 
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� else 

• set 
( 1)k+ =x any vector of unit length 

o set 1k k= +  

• end loop 

• Return 
( 1)k −=x x  

end Mim_Quad 

 

Algorithm for minimum weighted matrix norm 

Now let us back to the original matrix problem (4). The Min_Quad algorithm can be used to solve this 

problem, but first we need to find a good starting matrix Y .For this purpose we can use the 

eigedecomposition of our correlation matrix 
T

R Q Q= Λ , where Q is orthonormal and Λ is a diagonal 

matrix with eigen values of R . Then the starting matrix can be set as  

{ }(0) 1/2,
|| ||

P
Y P Q

P
= = Λ         (10) 

This method is known as “principle component analysis (PCA)” [].  

The algorithm to find the nearest positive definite matrix to R is as follows: 

Algorithm- 1 

Find_Nearest (R,W) 

• Find 
(0)

Y using (10), set k=0 

• Do until 

( 1) ( )

1( )

{ ( ) ( )}

( )

k k

k

f X f X

f X
ε

− −
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o for 1,2......i n=  
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o Set 
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k k k
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o Set k=k+1 

• end loop 

• Return 
( 1)k

X
−

 

end Find_Nearest 

The final matrix X will have number of eigen values equal to 0 is same as number of negative eigen 

values of R. To make X positive definite all the zero eigen values can be made positive by a small 

number. This can be achieved by doing the eigenvalue decomposition of X and making all the zero eigen 

values in the diagonal matrix equal to a small positive number but taking the same orthogonal eigen 

vectors. 

 

Algorithm in case of no weights 

The previous algorithm gives the optimum positive definite matrix whether weight matrix is used or not. 

Algorithm-1 can be used with a weight matrix having all elements equal to 1 in order to handle non-

weighted correlation matrix optimization. But there is another algorithm presented in Higham[] which 

works much faster than previous one, but this algorithm cannot handle the general weight matrix. In case 

of large correlation matrices (mostly dimension more than 100 x 100) and unweighted matrix problems, 

Higham’s algorithm can be used to save the running time. Both algorithms give the same result in case of 

unweighted matrix problem. The idea behind the latter algorithm is finding the successive projections of 

matrix in set S (set of correlation matrix) onto the set PS (set of positive semi definite matrix) and again 

from set PS onto set S until the stopping criteria has met. This way the successive projections come closer 

and closer after each iteration and at the end the resultant matrix lies on the intersection of sets PS and S.  

Algorithm-2 

 

Unweighted_Find_Nearest (R) 

• Set S0=0 , Y0 = R.  

• for k=1,2……..until stopping criteria = true 

1. Ak = Yk-1 – Sk-1 

2. Do the eigendecomposition of Ak = V*D*V
-1

: D is diag(λ), where λ’s are eigenvalue of Rk. 

� Find D1 by making all negative dii = 0, i.e. replace all the negative eigenvalues 

with 0. 

� Xk = V*D1*V
-1

 

3. Sk = Xk - Ak 

4. Yk = Xk  

5. Set yii =1 

• end for loop 

 

end Unweighted_Find_Nearest 

The procedure mentioned line-2 inside the for loop is the projection from correlation matrix set S onto  

the positive semi definite set P, and line-5 finds the opposite projection that is projection from set PS onto 

set S. The resultant matrix will be positive semi definite (if the correlation matrix R is indefinite), it can be 
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made positive definite as mentioned in previous section. The uniqueness of the solution and optimality 

theorems related with algorithm-2 is explained in [1]. 

 

Numerical experiments: 

The following example is designed to show the different ways of optimizing an indefinite correlation 

matrix and how much the solution differs in different approaches. Let’s look at a simple correlation matrix 

of size 3 x 3: 

1 0.9 0.85

0.9 1 0.2

0.85 0.2 1

R

 
 

=  
 
 

 A simple observation shows that there is something wrong in the 

correlation between (2,3) because it is low even when the correlation between (1,2) and (1,3) is high. It 

means that when (1,2) and (1,3) are highly correlated then so (2,3). The eigen values of matrix R are -

0.1442, 0.8003, and 2.3418. One negative eigen value is making this matrix indefinite. Now, suppose we 

want to change the error full element R(2,3) only by increasing this value and not effecting the other 

ones.  Changing R(2,3) to 0.68 (call this matrix as R_new) will hev eigen values 0.0036, 0.5371, and 2.4594. 

New matrix is positive definite and the Frobenius norm of the difference || _ ||R new R− = 0.48.  

The optimal correlation matrix for equal weights to all elements, based on the algorithm-2 is: 

1 0.8122 0.7697

0.8122 1 0.2530

0.7697 0.2530 1

X

 
 

=  
 
 

  the eigen values of X are 0.0001, 0.7475, and 2.2524. And 

|| || 0.1842X R− =        The previous norm || _ ||R new R−  is about 160% higher than this optimal 

one. 

Now let us consider the case when we want to restrict the relative change in the individual elements of 

correlation matrix R. Suppose, based on some uncertainty calculations we end up with a weight matrix 

W  on the individual elements of R. 

1 0.95 0.80

0.95 1 0.10

0.80 0.10 1

W

 
 

=  
 
 

the dialgonal elements of W  will always be 1 because the diagonal 

elements of a correlation matrix are always 1. Also the weight matrix will be symmetric. 

The optimal nearest positive definite matrix is (based on algorithm-1): 

1 0.8617 0.8106

0.8617 1 0.4014

0.8106 0.4014 1

W
X

 
 

=  
 
 

,   || || 0.1157
W W

X R− =  

As we see the relative change in the individual matrix element agrees with the weight matrix W.  

 

Numerical test has been performed on algorithm-1 and algorithm-2. Correlation matrix R was created 

randomly by making unit diagonal elements and generating uniformly distributed random numbers 

between 0 and 1 for upper half of non-diagonal elements of R. Then, taking lower half same as of the 

upper half of R in order to make it symmetric correlation matrix. The probability of getting an indefinite 

correlation matrix by this random method is nearly 1 when the R is large enough (more than 6 x 6). 

Numerical experiments on many randomly generated correlation matrices in the case of unweighted 

matrix norm give same result in both algorithms. The algorithms were implemented in “MatLAb-7.5”. 

Comparison in terms of time between algorithm-1 and algorithm-2 is shown in the figure-1. The code was 

run on Intel Dual 2GHz, 3GB memory computer. As we see algorithm-2 is very fast, it takes about only 4 

seconds for matrix of size 150 x 150. Whereas algorithm-2 is very slow as compared to previous one. In 



the plot run time was determined by taking the average of 10 run times for same matrix dimension. 

cubic function has been fitted for algorithm
-5 3 2

(6.92  10 ) (0.0099) - (0.1495) 0.8428 seconds

where  is the dimension of correlation m

t x n n n

n R

= + +

Based on this the run time for algorithm

cubic approximation seems valid because eigenvalue decomposition of a square matrix of size 

mostly order
3( )nΘ . 

Figure 1: Comparison between run 

To see the effect of weights on the final matrix we used the same matrix R 

Figure-2 represents the value of

increased, but other weights are equal to 

Figure 2: Effect of weight on matrix R                      

Sorted eigen values of a randomly generated indefinite correlation matrix are plotted in figure

with the unweighted optimal positive definite matrix. As we see all the negative eigen values of original 

matrix shifts near to zero and the remaining positive eigenvalues decreased. 

Comparison with a method presented in CCG report 

generated correlation matrix of size 20 x 20. The method presented in [4] generates a positive definite 

Paper 401, CCG Annual Report 11

401-7 

determined by taking the average of 10 run times for same matrix dimension. 

een fitted for algorithm-1 based on run up to matrix dimension of 50 x 50:
-5 3 2

(6.92  10 ) (0.0099) - (0.1495) 0.8428 seconds

where  is the dimension of correlation matrix 

t x n n n

n R

= + +

algorithm-2 having 150 x 150 matrix size will be about 435

cubic approximation seems valid because eigenvalue decomposition of a square matrix of size 

 
: Comparison between run times of algorithms 

on the final matrix we used the same matrix R used in the example above

2 represents the value of changed matrix elements when weight corresponding to R(2,3) is 

are equal to 1. 

: Effect of weight on matrix R                      Figure 3: Eigen values of indefinite matrix and optimal 

one. 

igen values of a randomly generated indefinite correlation matrix are plotted in figure

al positive definite matrix. As we see all the negative eigen values of original 

matrix shifts near to zero and the remaining positive eigenvalues decreased.  

thod presented in CCG report [see 4]: Comparison was done on a randomly 

generated correlation matrix of size 20 x 20. The method presented in [4] generates a positive definite 

, CCG Annual Report 11, 2009 (© 2009) 

determined by taking the average of 10 run times for same matrix dimension. A 

based on run up to matrix dimension of 50 x 50: 

(6.92  10 ) (0.0099) - (0.1495) 0.8428 seconds,
 

435 seconds. The 

cubic approximation seems valid because eigenvalue decomposition of a square matrix of size n has 

 

used in the example above. 

when weight corresponding to R(2,3) is 

 

: Eigen values of indefinite matrix and optimal 

igen values of a randomly generated indefinite correlation matrix are plotted in figure-3 along 

al positive definite matrix. As we see all the negative eigen values of original 

done on a randomly 

generated correlation matrix of size 20 x 20. The method presented in [4] generates a positive definite 
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correlation matrix but the difference of norm between fixed and original one was 13.2, whereas 

algorithm-2 gives an optimal matrix with difference in norm equal to 3.3. 

 

Concluding remarks 

This work presents the methodology to fix the indefinite correlation matrices. Algorithm-1 and 2 

guarantee to find the nearest positive definite matrix. Currently we are investing on (1.) How to select an 

appropriate weight matrix based on correlation coefficient uncertainty in order to incorporate the desired 

relative change in the elements of the correlation matrix, and (2.) The effect and possible solutions of ill-

conditioned optimal matrix. 

 

Program Documentation 

Two separate subroutines were written to implement algorithm-1 and algorithm-2. These subroutines 

were written in FORTRAN and as well as in MATLAB. The details of FROTRAN subroutines are as follows: 

 

Fix indefinite correlation matrix by means of weights, FixCorrMat_weight  This program finds the nearest 

positive definite matrix based on Algorithm-1. The structure of this subroutine is as follows:  

 

FixCorrMat_weight(R,W,n,C) 

INPUT ARGUMENTS: 

• R: a square matrix (must be 2 dimensional array of size n x n) 

• W: weight matrix, same as size of R, Each element of W, W(i,j) corresponds to the confidence in 

the correlation coefficent R(i,j). If W(i,j)=1, the fixed matrix C will have C(i,j)=R(i,j). Thus all the 

diagonal elements of W must  be 1. and W(i,j)<=1,                                        

• n: Size of the matrix (a square matrix of size n by n). 

OUTPUT ARGUMENT 

• C: The fixed correlation matrix returned by subroutine. 

 

Fix indefinite correlation matrix without weights, FixCorrMat 

This program find the nearest positive definite matrix based on Algorithm-2 as presented in section-3.2. 

The structure of this subroutine is as follows:  

FixCorrMat(R,n,C) 

INPUT ARGUMENTS: 

• R: a square matrix (must be 2 dimensional array of size n x n) 

• n: Size of the matrix (a square matrix of size n by n). 

OUTPUT ARGUMENT 

• C: The fixed correlation matrix returned by subroutine. 
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