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In resource estimation work, variogram fitting is a routine process where geologist usually fit models 

independently to the experimental variograms of variables to be estimated. This process is time consuming 

and tedious when there are many variables per geological domain and many geological domains per 

deposit. Varfit_lmc, the semi-automatic variogram fitting routine developed at the Centre for 

Computational Geostatistics makes variogram fitting of multiple variables easier and faster by fitting a 

valid linear model of coregionalization (LMC) to all variables of interest. However, while the LMCs 

produced by prior versions of the program are valid, initial investigations found that the optimized nugget 

effects were often unrealistic, or a positive definite LMC matrix could often not be found when nuggets 

and sills were set by the user. This paper presents a method that determines the nearest positive definite 

matrix to a possibly non positive definite matrix input by the user in variogram fitting, and incorporates 

this method in the Varfit_lmc semi-automatic variogram fitting routine.  The algorithm and its application 

are discussed and demonstrated using the Jura dataset. 

 

Introduction 

 

Varfit_lmc is a semi-automatic variogram fitting routine developed at the Centre for Computational 

Geostatistics (Larrondo, Neufeld and Deutsch, 2003 and Neufeld and Deutsch, 2004). Within varfit_lmc an 

initial model is gradually perturbed and with each perturbation the change in the objective function is 

noted. Only changes that minimize the objective function are allowed. Within the varfit_lmc routine the 

user has the option of fixing certain LMC (linear model of coregionalization) components such as the 

nugget, sills, structure types or the ranges of particular structures. When the nugget or sill components 

are fixed, the user needs to ensure that the initial matrices are positive definite. For a large number of 

variables, ensuring that the initial input matrices are positive definite can be tedious, requiring much trial 

and error. To solve this issue, a subroutine has been developed that finds the nearest positive definite 

matrix to a given non positive definite matrix was added to varfit_lmc. 

 

Finding the nearest positive definite matrix is a matrix nearness problem where for a given matrix A , the 

nearest member of a certain class of matrices needs to be found. Nearness (distance) is measured by 

some matrix norm. Higham (1989) describes different types of matrix nearness problems. In the approach 

described below the Frobenius norm will be used. If the distance norm is the Frobenius norm, then the 

nearest positive definite matrix to a given arbitrary matrix A  is relatively easy to determine and is given 

by the projection of A  on the positive definite cone of A , which can be found by a spectral 

decomposition of A  (Boyd and Xiao, 2005). Calculation of the nearest positive definite matrix when 

nearness is measured by other norms then the Frobenius (i.e. 2-norm etc) is generally more complicated 

(Higham, 1989). 

 

Methodology 

 

An algorithm for determining the nearest positive definite matrix FX  given an arbitrary N x N square 

symmetric matrix A  with real entries when nearness is measured using the Frobenius norm is given in 

Higham (1989) and proceeds as follows: 
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1. Determine the spectral decomposition of A : 
TQΛΛA =  where Q  is a square N x N matrix which 

contains the eigenvectors of A  and Λ  is a diagonal matrix with the diagonal entries being the 

corresponding eigenvalues 
i

λ of A .  

2. Next within Λ  set each eigenvalue to 0 when 0<
i

λ   

3. Calculate FX =
TQΛΛ  

 

The above described algorithm allows for deviation of the elements of matrix A  from the initial entries 

without constraint. Consider the following example where matrix A  is a matrix of nugget effect and 

cross nugget effects for 4 variables i.e. Cd, Co, Cr and Cu.  



















=

0.2000    0.5000    0.1000    0.5000-

0.5000    0.2800    0.2400    0.4000-

0.1000    0.2400    0.2500    0.2500-

0.5000-   0.4000-   0.2500-   0.3000

A  

 

Matrix A  is not positive definite. Its eigenvalues are -0.3317; -0.1101; 0.1676 and 0.3042. 

 

If the algorithm by Higham (1989) is used to calculate FX  then the following matrix is obtained: 

 



















=

0.3926    0.3891    0.1580    0.3944- 

0.3891    0.3990    0.2083    0.4057- 

0.1580    0.2083    0.2675    0.2166- 

0.3944-   0.4057-   0.2166-   0.4128

 FX  

 

In matrix FX  the diagonal elements (nuggets fitted to the auto variograms) have changed. The user 

might decide that a nugget of 0.39 for Cu is too high and would like to fix certain elements of matrix A .  

 

Incorporating equality constraints 

 

To incorporate equality constraints the algorithm by Higham (1989) can be modified as follows: 

1 Start by initializing 0=0∆S  and AY0 =  

 For k = 1, 2,… 

 1k1kk ∆SYR
−−

−=  

2 Project kR  on its positive definite cone to get kX  i.e. steps 1, 2 and 3 from the algorithm by 

Higham (1989)  

3 Calculate kkk RX∆S −=  

4 Within kX  set the matrix elements that need to remain fixed to their respective values and 

generate kY . 

 End loop 

 

This algorithm is known as the alternating projections method (Higham, 2002) and has been implemented 

in the varfit_lmc routine. In some instances the derived positive definite matrix might be very near to 

being negative definite and rounding errors might make the rounded matrix no longer positive definite. 

To generate a more robust positive definite matrix instead of setting the negative eigenvalues to zero, 
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they are set to a small positive number. This however, compromises on the nearness of the positive 

definite matrix to the initial input matrix. If nearness is important one can either place constraints on the 

trace of the matrix or reallocate the negative eigenvalues proportionally to the positive eigenvalues 

(Mueller, 2009).  

 

If inequality constraints need to be placed on some or all of the matrix elements convex optimisation can 

be used to generate the nearest positive definite matrix (Boyd and Xiao, 2005). This was however, not 

implemented for varfit_lmc. 

 

Positive definite partial sill matrices 

 

Ensuring that the input matrix with the nugget effects for the LMC is positive definite, does not ensure 

that the matrices containing the partial sills for the LMC are also positive definite. Within varfit_lmc the 

user can either fix the nugget effects or the total sills. When the total sills are not fixed, the program 

calculates the total sills as the average of all experimental points at program initialisation. Similarly when 

the nugget effects are not fixed they are set to zero (starting value) at program initialisation. Depending 

on the number of structures specified by the user the starting values of the partial sills are set to the 

difference between the sill and the nugget divided by the number of structures (Larrondo, Neufeld and 

Deutsch, 2003).  

 

When the user inputs a matrix of nugget effects, one way to ensure that the matrix of total sills is also 

positive definite is the following: 

1 Make sure that the matrix of nugget effects 0C  is positive definite. If it is not, use the 

algorithm described above to find the nearest positive definite matrix 
P

0C . 

2 Calculate the difference matrix M  between the total sill C  and 
P

0C  (
P

0CCM −= ). It 

does not matter if the total sill is user supplied or calculated by the program. 

3 If the difference matrix M  is not positive definite, find its nearest positive definite matrix 
PM . 

4 To get the positive definite total sill add the positive definite difference matrix and the 

positive definite C0 matrix (
P

0

P
CM + ) 

5 The starting values of the partial sills can then be calculated by dividing the difference 

between the sill and the nugget effect (
PM ) by the number of structures and these partial 

sill matrices will be positive definite. 

 

The workflow above is based on two properties of positive definite matrices: 

• If two matrices A  and B  are positive definite, then their sum ( BA + ) is also positive definite. 

• If A  is a positive definite matrix then Ar  is also positive definite for 0>r . 

 

A multivariate example using the Jura data set 

 

The Jura dataset contains seven variables sampled at 359 locations. A valid LMC needs to be fitted to all 

seven variables Cd, Co, Cr, Cu, Ni, Pb and Zn. For these seven variables (28 variograms in one direction) 56 

variograms need to be fitted simultaneously in two directions. The variables have been standardized and 

the correlation matrix for the 7 standardized variables is given below in Table 1. 
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Table 1: Correlation matrix for the 7 standardized variables with strongly correlated variable highlighted 

 

VARIABLE Cd Co Cr Cu Ni Pb Zn 

Cd 1 0.26 0.58 0.15 0.49 0.22 0.62 

Co   1 0.48 0.19 0.74 0.16 0.44 

Cr     1 0.21 0.71 0.26 0.61 

Cu       1 0.22 0.82 0.66 

Ni         1 0.27 0.59 

Pb           1 0.67 

Zn             1 

 

As the table shows, the more strongly correlated variables are Co-Ni, Cr-Ni and Cu-Pb.  

 

For input into varfit_lmc the following components have been fixed by the user: 

1 The sills of the seven auto variograms are all set to unity, which is the expected sill of 

standardized variogram. 

2 The sills of the cross variograms is set to the correlation respective coefficients listed in Table 

1. 

3 Following interpretation of the experimental auto variograms, the nugget effects of the auto 

variograms are set to the values listed in Table 2. 

4 An isotropic model with two spherical structures was specified and the range of the second 

structure set to 1.3 km.  

 

Table 2: Fixed nugget effects interpreted from experimental variograms 

 

Variable Nugget 

Cd 0.25 

Co 0.10 

Cr 0.20 

Cu 0.30 

Ni 0.10 

Pbi 0.35 

Zn 0.10 

 

 

After fitting the LMC with varfit_lmc, the matrix of total sills was checked as show in Table 3, which shows 

that the correlations between the variables listed in Table 1 are reproduced. 

 

Table 3: Matrix of total sills for the fitted structures. 

 

 Cd Co Cr Cu Ni Pb Zn 

Cd 1 0.26 0.58 0.15 0.49 0.22 0.62 

Co   1 0.48 0.19 0.74 0.16 0.44 

Cr     1 0.21 0.71 0.26 0.61 

Cu       1 0.22 0.82 0.66 

Ni         1 0.27 0.59 

Pb           1 0.67 

Zn             1 

 

The nugget effects fitted to the auto and cross variograms by varfit_lmc are listed in Table 4 below. The 

fixed nuggets for the auto variograms were fixed and remain the same as Table 2. If the user is not 
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satisfied with the values fitted to the cross variograms (the nuggets on the auto variograms were already 

fixed), there is the option to fix some or all of these and rerun varfit_lmc. 

 

Table 4: Matrix of nugget effects for the fitted structures. 

 

  Cd Co Cr Cu Ni Pb Zn 

Cd 0.25 0.00 0.06 0.04 0.03 0.06 0.03 

Co  0.10 0.03 0.00 0.01 0.00 0.00 

Cr   0.20 0.02 0.04 0.03 0.03 

Cu    0.30 0.00 0.17 0.09 

Ni     0.10 0.00 0.00 

Pb      0.35 0.08 

Zn       0.10 

 

Two spherical structures have been fitted: 

• Structure 1 has a maximum range of 0.285 km and is isotropic. 

• Structure 2 has a maximum range of 1.3 km and is isotropic. 

The partial sill matrices for these two structures are shown in Table 5. These partial sills are all positive 

semi definite and the fitted LMC is thus valid. 

 

 

Table 5: Matrix of partial sills for the fitted structures. 

 

Structure 1 

  Cd Co Cr Cu Ni Pb Zn 

Cd 0.579 0.000 0.394 0.098 0.171 0.112 0.437 

Co  0.206 0.155 0.062 0.200 0.034 0.108 

Cr   0.660 0.172 0.428 0.194 0.433 

Cu    0.432 0.180 0.406 0.385 

Ni     0.359 0.183 0.321 

Pb      0.400 0.381 

Zn       0.616 

Structure 2 

  Cd Co Cr Cu Ni Pb Zn 

Cd 0.171 0.259 0.127 0.009 0.291 0.045 0.152 

Co  0.698 0.291 0.128 0.526 0.126 0.332 

Cr   0.140 0.018 0.243 0.033 0.143 

Cu    0.269 0.039 0.248 0.188 

Ni     0.541 0.087 0.266 

Pb      0.250 0.206 

Zn       0.284 

 

 

Given the noise in some of the cross variograms the program has provided a reasonable fit for the 7 

elements. Plots of the experimental variograms against fitted models are shown in  

 

Conclusion 

Varfit_lmc has been shown to fit reasonable valid LMC models with user input of nugget/sill matrices, 

ranges and structure types. The program can handle a large number of variables and is quick to use and 

provides a more holistic approach to independent modeling of multiple variables in resource estimation. 
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The initial nugget and sill matrices input by the user do not have to be positive definite since the program 

determines the nearest positive definite matrix when the input matrices are not positive definite.  
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Figure 1. Fitted auto and cross variograms for Cd and Co 
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Figure 2. Fitted auto and cross variograms for Co and Cr 
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Figure 3. Fitted auto and cross variograms for Cr, Cu and Ni 
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Figure 4. Fitted auto and cross variograms for Ni, Pb and Zn 
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