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Multiple Bivariate Gaussian Plotting and Checking 
 

Jared L. Deutsch and Clayton V. Deutsch 

 

The geostatistical modeling of continuous variables relies heavily on the multivariate Gaussian 

distribution.  It is remarkably tractable.  If data are deemed nonGaussian, then additional steps need to be 

taken such as linearization by ACE or multivariate transformation by the stepwise conditional 

transformation.  A quantitative measure of departure from the bivariate Gaussian distribution is 

established based on quadrants and the distribution of differences from the theoretically expected 

distribution.  Although approximate, the measure of departure is useful to compare different distributions 

and guide the geostatistician to look closer at some data variables.  A scatnscores program is shown 

that will plot all K(K-1)/2 bivariate cross plots associated with K variables.  The correlation coefficients, 

number of data, degree of departure from bivariate Gaussianity and bivariate Gaussian probability 

contours associated to specified cumulative probabilities are shown.  The data IDs can also be shown to 

help track down outlier or problematic data. 

 

Introduction 

Geostatisticians are increasingly faced with multiple regionalized variables including multiple secondary 

data sources and multiple correlated variables to predict.  Variables in the earth sciences are almost 

always related in some manner.  Quantifying these relationships is relatively simple if the multivariate 

distribution is Gaussian after univariate transformation of each variable.  Often important relationships 

are bivariate in nature and require only the assumption of bivariate Gaussianity.  In geostatistical models, 

bivariate Gaussianity is often assumed and not checked due to lengthy procedures required, especially 

with a large number of variables.  This short note addresses this problem with the introduction of a 

statistical measure of departure from bivariate Gaussianity. 

 

Background 

Consider two random variables X and Y that are univariate standard normal with a known correlation 

coefficient, ρ.  It can be convenient to assume the distribution is bivariate Gaussian but this is impossible 

to conclude solely based on the univariate Gaussianity of X and Y.  Recall the three most important 

sources of non-Gaussian behavior, illustrated in Figure 1: non linearity, heteroscedasticity and constraints.  

When these deviations become significant, we would not assume bivariate Gaussian behavior.  Further 

transformations or subdivisions would be necessary. 

 There are a large number of statistical tests for multivariate Gaussianity.  Comprehensive 

summaries of these tests are given by Gnanadesikan (1996) and Thode (2002) so only a brief survey of 

some of the major tests is included here.  Most tests for multivariate Gaussianity can be classified as 

either a graphical method, a skewness and kurtosis method, or related to the W-test. 

 One of the principal graphical methods for testing for multivariate Gaussianity is the construction 

and inspection of a chi-squared plot of the Mahalanobis distances (Gnanadesikan, R., 1996, Johnson and 

Wichern, 2002 and Wilks, 2006).  The deviation from multivariate Gaussian behavior is measured using a 

correlation coefficient or similar measure.  This is a powerful test for bivariate Gaussianity but requires 

individual treatment of each plot by the statistician to determine whether the deviation is significant or 

not, which makes it unwieldy for a large number of variables. 

 Another class of multivariate Gaussianity tests are the skewness and kurtosis methods, 

pioneered by Mardia (1970, 1974 and 1975).  These techniques have been applied to ore body analysis, 

(Baxter and Gale, 1998) and are useful for detecting departures from multinormality but were found by 

Baxter and Gale to not be as powerful as the W-tests. 

 Tests using the W-statistic, introduced by Shapiro and Wilk (1965) comprise a powerful class of 

univariate normality testing techniques as illustrated by the comprehensive study conducted by Shapiro 

et al. (1968).  These are generally sensitive to all the major departures from normal behavior including 

both skewed distributions and symmetric distributions.  Application of the W-statistic for multivariate 
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normality testing was detailed by Royston (1983) but did not show the same power as the test for 

univariate normality since it must be applied to the marginal distributions of the multivariate. 

 All of the above detailed techniques generally involve a large amount of investigative work into 

each of the marginal distributions of the multivariate by the statistician and so do not lend themselves to 

a geostatistical application which can involve a large number of variables.   

 A specialized check for bivariate Gaussianity applied to indicator variables was discussed by 

Deutsch and Journel (1998).  This check calculates the cumulative probability for each quadrant in the 

bivariate Gaussian distribution and compares this with the observed proportion.  This technique is 

suitable for assessing the viability of indicator techniques, but is not as suitable when applied to many 

different continuous variables.  Deutsch and Journel note that a statistical check differs from a formal 

statistical test in that it is not suitable for rejecting a hypothesis.  It can be, however, a useful 

approximation when a formal statistical test is unwieldy or unavailable.  As with the technique proposed 

by Deutsch and Journel, the method proposed in this paper is a check and is not a formal statistical test. 

 

Plotting 

The probability density function of two random variables X and Y with a bivariate standard normal 

distribution (BVSN) is parametrized by the correlation coefficient, ρ (Equation 1) and describes a bell 

shaped surface.  While the probability density function of a bivariate distribution is three dimensional, it is 

possible to trace constant density contours from the distribution onto the scatterplot of X and Y. 
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A contour of this distribution on the scatterplot of X and Y has the general form of Equation 2.  Choosing 

c
2
 equal to the chi-squared probability with two degrees of freedom for a given probability α, χ

2
2(α), 

means that the cumulative probability inside the ellipse is equal to α.   
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For a bivariate standard normal distribution, the constant density ellipses will always be oriented at ±45° 

relative to the x-axis depending on the sign of ρ.  The ranges of these ellipses are dependent on the chi-

squared value and correlation coefficient.  This ellipse configuration is illustrated in Figure 2.   

 To facilitate visual inspection of bivariate normal scatterplots, the scatnscores program plots 

the constant probability density contours for 25%, 50% and 95%.  It also calculates the correlation 

coefficient and the measure of deviation from bivariate Gaussianity described below.  An example 

scatterplot using the familiar 2DWellData.dat from Deutsch (2006) is shown in Figure 3.  With the aid of 

these contours, it is reasonable to visually inspect individual scatterplots and determine if the variables 

are approximately bivariate Gaussian.  However, as the number of variables increases this soon loses 

appeal due to the number of scatterplots to inspect (equal to K(K-1)/2).  The contours are also useful in 

detecting outliers such as well 554 which falls significantly outside the 95% contour as shown in Figure 3. 

 For this reason we propose a quantitative check for bivariate Gaussianity that will identify 

bivariate relations that cannot be reliably considered Gaussian. 

 

Check for bivariate Gaussianity 

The proposed check for bivariate Gaussianity focuses on the properties that a sample drawn from a 

bivariate Gaussian distribution should satisfy.  The check is less powerful when fewer data pairs are used 

and more powerful as the number of data pairs is increased.  This is considered in the final measure of 

how far the bivariate distribution departs from bivariate Gaussianity. 

 The first step counts the fraction of points falling in each of the 25%, 50% and 95% contours and 

compares them to the expected fraction.  To check for this, the Mahalanobis distance, Di
2
, is calculated for 

each data pair (xi, yi) using Equation 3.  The fraction of D
2
 values that are less than each of the χ

2
2(α) 

values should be equal to α.  Calculated χ
2

2 for α values of 0.25, 0.50 and 0.95 are 0.5753, 1.3863 and 

5.9915 respectively.  It is expected that limited data will result in deviations from the expected fractions.  

The check is optimized so a large deviation from bivariate normal behavior is flagged while small 

deviations possibly stemming from limited data are ignored.   
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The second step compares the fraction of points falling within each of the four quadrants of the constant 

density ellipses and compares this with the expected value of 25% per quadrant.  To do this, the data 

points are first transformed so that they are along the principal directions of the ellipse and then the 

fraction of points in each quadrant is determined.  The rotation matrix, corrected for the sign of the 

correlation coefficient is given below (Equation 4).  The sign of xR and yR are correlated to a quadrant using 

the scheme depicted in Figure 4.   
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The maximum allowed deviation from 25% per quadrant is again optimized so that it reflects a departure 

from Gaussian behavior and not limited data available. 

 

Measure of Deviation 

The sum of small deviations is used to combine the two checks into a single measure of deviation from 

perfect bivariate normality.  The deviations from the expected number in each quadrant for each of 25%, 

50% and 95% contours are summed and averaged.  This value, Δ, is an approximate measure of deviation 

from perfect bivariate normal behavior with infinite data.  Mathematically, this is shown in Equation 5 

where n is the number of paired data points.   
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A Monte Carlo simulation study was undertaken to determine the largest expected Δ for a given number 

of data points.  100,000 realizations each for n values from 10 to 1000 in increments of 10 were drawn 

from a BVSN.  The 0.99 quantile value of Δ for each value of n was calculated and fit using a power model.  

The resulting equation and plot of simulated delta quantiles as a function of n are given in Equation 6 and 

Figure 5 respectively.   

 
0.49749

0.99 1.94917n
−∆ =  (6) 

It can be seen that the power of n is very close to -0.5 which is expected given the 1/n decrease in 

variance and the linear relation between quantiles and the standard deviation.  For a Gaussian 

distribution, the standard deviation, which is normalized by 
0.5

n
−

 is a measure directly linked to 

quantiles.  To approximate values for Δ0.999 and Δ0.9999, 10 million realizations were generated for low and 

high n values and the corresponding quantiles calculated.  Equation 6 was updated to reflect the Gaussian 

behavior of the distributions and is normalized by 
0.5

n
−

 (Equation 7).  The functions fit are provided in 

Equation 8.   
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These empirically determined quantiles are provided because the distribution of Δ values is significantly 

skewed for larger sample sizes.  Histograms of simulated Δ values for n values of 10, 100 and 1000 are 

provided in Figure 6.  For this reason, the power of this check is only for those quantiles (0.99, 0.999 and 
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0.9999).  This level is suitable for most geostatistical applications as it can highlight bivariate distributions 

s that are worth investigating using one or more of the formal approaches described earlier. 

 If a Δ value above Δ0.99 for a given number of data points is calculated then it is unlikely that the 

assumption of bivariate Gaussianity is met and linearization by ACE or multivariate transformation by the 

stepwise conditional transformation may be necessary.  We recommend a check scheme which uses a 

standardized value δ (Equation 9).  The calculated value of δ is checked to see what range it falls in (Table 

1) and the bivariate distribution is classified.   
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Table 1: Classification of δ based on evidence of nonGaussian behavior 

Degree of Departure 

from BVSN 

Range Classification 

0 δ < 1 Not enough evidence to assume nonGaussian 

1, >99% nonBVSN 1 ≤ δ < 1.192 Bivariate is very likely nonGaussian and should be checked 

2, >99.9% nonBVSN 1.192 ≤ δ < 1.361 Bivariate is extremely likely nonGaussian and should be checked 

3, >99.99% nonBVSN 1.361 ≤ δ Bivariate is nonGaussian and should be transformed 

 With fewer than 10 data points, it is unreasonable to use any quantitative check for bivariate 

Gaussianity.  As noted by Johnson and Wichern (2002) and Shapiro et al. (1968), with few data points only 

extreme departures from bivariate normality can be detected with reasonable assurance.  The ease at 

which departures from bivariate Gaussianity can be detected increases as the number of data points 

increases. 

 

Implementation 

The program scatnscores implements the plotting and checks discussed above.  Standard GSLIB 

convention is used for the data file and parameter file.  For details on the specific implementation and 

FORTRAN90 code, an Appendix is included.   

 A number of fabricated data sets (Figure 7) illustrating each of the principle behaviours 

responsible for nonGaussian distributions are plotted and the δ values calculated.  Each set is composed 

of two random variables that have been normal score transformed with a calculated correlation 

coefficient.  For simplicity, each of the data sets has 200 data pairs.   

 The first data set exhibits significant non-linearity which results in a 1
st

 degree departure from 

bivariate Gaussianity.  The second and third data sets, illustrating hereoscedasticity and constraints 

respectively, are also flagged with 3
rd

 degree departures from bivariate Gaussianity.   

 

Case Study 1: Training Data 

The first set of data studied is the familiar 2DWellData from Deutsch (2006).  This data set was simulated 

from a multivariate Gaussian distribution for geostatistical training purposes so should not be flagged as 

nonGaussian.  The matrix of cross plots generated by scatnscores is included (Figure 8) and there are 

indeed no cross plots flagged using the conditions above (recall Table 1).   

 

Case Study 2: DV Well Data 

The second data set checked was the DV_Well.dat set which is a real world data set with acoustic 

impedance, log porosity and log permeability data.  The three bivariates, shown in Figure 9, all show 

significant deviations from Gaussian behavior.  All three principle phenomena responsible for 

nonGaussian behavior can be seen.  The upper two cross plots of log porosity vs acoustic impedance and 

log permeability vs acoustic impedance both show signs of constraints and possible non-linearity.  The 

lower plot of log permeability vs log porosity shows significant heteroscedasticity.   
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Case Study 3: Red Data 

The final set of data checked was the Red Dog data, red.dat.  This data set included thickness, gold silver, 

copper and zinc contents.  The cross plots are shown in Figure 10.  There was no reason to reject any of 

the bivariate distributions as nonGaussian, possibly due to the limited number of data (62).  For this data 

set the multivariate Gaussian distribution could likely be assumed, however, visible outliers in the cross 

plots should be checked.   

 

Conclusion 

The assumption of multivariate normality is widely employed for the geostatistical analysis of multiple 

variables.  Deviations from multivariate normal behavior may have to be dealt with separately to ensure 

that the results of Gaussian simulation are acceptable.  The check proposed in this note could be used 

whenever the set of bivariate distributions of a number of variables is suspect.  This check is more 

powerful when a large amount of data pairs are available and is an efficient method for checking the 

assumption of bivariate Gaussianity.  In addition to checking the assumption of bivariate normality, the 

contour ellipses should be used to aid in tracking down data that deviate significantly from the expected 

distribution and could be problematic.   
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Appendix 

Two programs written in Fortran90 code are detailed here.  The first program, nscore_MV, normal score 

transforms a multivariate data set simultaneously.  This program was pulled together by John Manchuk.  

It keeps a transfomation table so the data sets can be back-transformed after analysis.  The second 

program, scatnscores, implements the plotting and checks discussed above.  It plots the full matrix of 

cross plots and correlation coefficient matrix for a multivariate data set where each of the univariate 

distributions are Gaussian.   
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The program nscore_MV normal score transforms a specified set of variables to be univariate normal.  

Standard GSLIB convention is used for the data file and parameter file.  An example parameter file is 

shown below.   

 

 
The parameter file for nscore_MV is similar to that of nscores detailed by Deutsch and Journel (1998).  

The data file is specified (line 5) and the number of variables and variable columns (lines 6, 7) are 

specified.  If desired, the data can be weighted or trimmed (lines 8, 9).  The transformed data and 

transformation table are output to the specified files (lines 10, 11).  Source code for nscore_MV is 

available in the CCG software catalogue.   

 The program scatnscores implements the plotting and checks discussed in this paper.  As 

with nscore_MV, standard GSLIB convention is used.  An example parameter file is given below.  Line 6 

specifies the number of variables to cross plot.  Line 7 specifies the columns of data containing each of the 

variables and if desired, line 8 the data ID numbers.  If you do not wish to have the points labeled with the 

data ID, line 8 is left as 0.  The image output file and bullet size (lines 9, 10) can also be specified.   

 

 
Figure A2: An example parameter file for CCG program scatnscores which implements the described plots 

and checks 

 

The program will plot the full matrix of cross plots automatically.  This is a (K-1)x(K-1) matrix since the 

cross plot of a variable against itself is not useful.  For each cross plot, the check statistic, δ, is calculated 

and flagged if it is greater than or equal to 1.0 (see Table 1).  The correlation coefficient matrix is 

calculated and displayed.  If a δ value is calculated which exceeds 1, then the degree of nonGaussian 

behavior (recall Table 1) is indicated on the cross plot.   
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Figure 1: The three most important sources of nonGaussian behavior: non-linearity, heteroscedasticity 

and constraints 

 

 
Figure 2: constant density ellipse ranges depend on the chi-squared value and the correlation coefficient 

 

 
Figure 3: An example cross plot of the familiar 2DWellData.dat.  Note that well 554 has an unusually low 

porosity for the seismic value and should probably be checked 

 

 
Figure 4: Quadrants of the constant density ellipse relative to the rotated axes; xr and yr 
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Figure 5: Simulation of Δ values from a BVSN for various n.  The upper curve is the 0.9999 quantile, the 

middle is the 0.999 quantile and the lower curve is the 0.99 quantile.   

 

 

 

 
Figure 6: Distribution of Δ values for various n.  Histogram a) corresponds to n=10, b) n=100 and c) 

n=1000.  Each histogram has a slightly skewed shape as Δ is bounded on the left by 0.   

 

 

 

 
Figure 7: Three fabricated data sets illustrating each of the principle phenomena responsible for 

nonGaussian behavior: a) non-linearity, b) heteroscedasticity, c) constraints 
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Figure 8: Cross plots of training data from Deutsch (2006).  A matrix of the correlation coefficients is given 

in the lower left hand corner.   

 

 
Figure 9: Cross plots of DV well data.  All bivariates exhibit significant nonGaussianity, likely stemming 

from one or more of the three principle phenomena responsible for nonGaussianity (Figure 7)   
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Figure 10: Cross plots of the red.dat data.  No bivariate exhibits significant nonGaussian behavior, 

however outliers are easily discernable using the 95% ellipse.     

 


