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Minimizing Error Variance in Estimates by Optimum Placement 

of Samples – A Comparison of Optimization Techniques 
 

Brandon Wilde 

 

Many optimization algorithms and objective functions have been applied to the problem of field 

measurement design.  This paper compares six optimization algorithms.  The objective function is the 

minimization of the estimation variance at all locations.  The algorithms compared are: genetic, random 

search, modified random search, gradient, Nelder-Mead simplex, and Hooke-Jeeves pattern search.  

Hooke-Jeeves and modified random search are found to be the most efficient algorithms for this problem. 

 

Introduction 

Problems that require sampling are common in all types of engineering, whether it be stream water 

sampling, ore deposit sampling, ground water sampling, or petroleum reservoir sampling (Ayyub, et.al, 

1990).  The ground water hydrologist takes samples from wells to determine the extent of a plume of 

toxic waste that has entered a ground water aquifer.  The mining engineer takes ore samples to estimate 

the expected yield of a vein.  The reservoir engineer drills wells to determine the productivity of a 

petroleum reservoir.  In all cases, the goal is to develop a field measurement design (FMD) that consists of 

the optimal number of measurements and the optimal locations of these measurements. 

 Many techniques have been created to determine optimal FMD, primarily in the area of 

groundwater sampling and monitoring.  A number of these techniques use stochastic models and 

consider a number of possible locations to optimize some objective function, usually involving sampling 

cost (Meyer and Brill, 1988; Meyer et.al, 1994; Storck, et.al, 1997).  Another technique is to locate the 

samples in such a manner that the estimation variance is minimized (Fiereing, 1965; Carerra, et.al, 1984; 

Virdee and Kottegoda, 1984; Rouhani, 1985; Rouhani and Hall, 1988; Loaiciga, 1989).  Other methods 

include the minimization of the coefficient of variation (Criminisi et.al, 1997), maximization of coverage 

(Hudak and Loaiciga, 1992) and minimization of cost (Andricevic, 1990; Zhang, 2005). 

 Some of the optimization techniques applied to FMD include non-linear integer programming 

(Fiering, 1965, Carrera et.al, 1984), mixed integer programming (Loaiciga, 1989), integer programming 

(Andricevic, 1990; Hudak and Loaiciga, 1992,1993), linear programming, (Meyer and Brill, 1988), 

simulated annealing (Meyer et.al, 1994; Storck, et.al, 1997), and genetic algorithms (Zhang and Pinder, 

2005; Catania and Paladino, 2008). 

 Common among all of the methods previously applied is the assumption of stationarity, that is, 

the assumption that the model statistics are constant in the modeling domain.  Each method uses this 

assumption.  For instance, the assumption of stationarity is necessary for the generation of stochastic 

models of the geology.  It is also a necessary assumption to minimize the estimation variance. This 

assumption is not always justified.  Natural phenomena show complex patterns of spatial variation that 

may not be represented well by stationary parameters.  Common 

departures from stationarity include: different directions of 

continuity; differing behaviours of high and low valued areas; 

abrupt changes in the variogram across different rock types; or 

smooth variations in the variogram direction within the modeling 

domain (Boisvert, et.al, 2009). 

 It is interesting to consider FMD in the presence of such 

non-stationarity, particularly as affected by different directions of 

continuity.  All previous work has considered a constant direction 

of continuity (Figure 1) or no direction of continuity as part of the 

assumption of stationarity.  In order to consider determining the 

optimal FMD in the presence of varying directions of continuity 

(Figure 2), it is important to first determine which optimization 

method is best suited to the problem.  That is the aim of this study.  

This study does not consider FMD in the presence of locally varying 

Figure 1:  Field with a constant direction 

of continuity. 
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directions of continuity.  This study is directed at determining 

which optimization method is most applicable for FMD where 

direction of continuity is constant.  This is done by applying various 

optimization techniques to optimal FMD for a field with a constant 

(or no) direction of continuity.  These techniques are compared to 

see which method gives the best results.  That method can then be 

applied to the variable direction field to determine the optimal 

FMD.  The method that works best for a field with constant 

direction of continuity will also work best for a field with varying 

direction of continuity.  A small change to the calculation of the 

objective function is the only difference.  To simplify further 

discussion, fields with no continuity direction (isotropic) are 

considered to have constant continuity direction. 

 This study is somewhat unconventional in the fact that the 

optimum locations of samples for a field with constant continuity 

direction are already known.  McBratney et.al (1981) showed that for a field with no continuity direction 

and monotonic increasing semivariogram, the optimal sample locations are located on an equilateral 

triangular sampling grid.  This is based on the fact that estimation variance is proportional to distance.  As 

distance to a sampled location from an unsampled location increases, so too does the estimation variance 

at that unsampled location.  The maximum distance between an interpolated point and its nearest 

sampling point can be minimized by sampling on an equilateral triangular grid where the maximum 

distance to a sample is 0.63d where d is the distance between samples.  A square grid is also close to 

optimal with a maximum distance to a sample of 0.71d.   

 These configurations are optimal only where there is no direction of continuity.  Where a field 

has a direction of continuity (anisotropy), McBratney et.al (1981) shows that the optimum sample 

locations fall on an isosceles triangular grid which is aligned with the direction of continuity and stretched 

in proportion to the anisotropy ratio along this direction.   

 Six new optimization techniques are applied to the problem.  The optimization techniques 

considered are: gradient, genetic algorithm, Nelder-Mead simplex, Hooke Jeeves pattern search, 

randomized search, and a modified version of randomized search.  The gradient method requires the 

determination of a gradient and step size for every location at every iteration while the other five 

methods are based solely on evaluations of the objective function.  The genetic algorithm is the only one 

of these techniques which has been applied before (Zhang and Pinder, 2005; Catania and Paladino, 2008).  

It is reapplied here in order to compare to the other methods. 

 

Comparison Example 

In order to compare these optimization methods, I will consider an area that is 1000m x 1000m in size.  

This area is discretized into a grid with 400 cells, each with a side length of 50m.  The estimation variance 

will be calculated at the center of each of these 400 cells and the sum of the 400 estimation variances will 

be taken as the objective function.  The locations of 25 samples will be optimized. 

 

Objective Function 

The estimate variance can be calculated at any location and does not depend on the value of the estimate 

at that location.  Most interpolation methods are a weighted average and have the general form shown in 

equation (1.1) where u is a location vector, Z(u)* is an estimate at location u, Z(ui), i=1,…,n are n data 

values and I refer to weights.  The optimal estimate at a location depends on the choice of the weights.  

In choosing the weights we could consider the closeness of the data to the location being estimated, the 

redundancy between data values, anisotropic continuity (direction), and the magnitude of the anisotropic 

continuity.  Anisotropic continuity, or anisotropy, refers to the condition of a geological variable being 

more continuous in one direction than another.  

 
*

1

( ) ( )
n

i i

i

Z u Z uλ
=

= ⋅∑  (1.1) 

Figure 2:  Field with varying directions 

of continuity. 
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A common method for choosing the weights is called kriging and is based on the idea of minimizing the 

error between the estimated value at a location and the unknown true value at that location.  This error is 

defined in equation (1.2) where Z(u)* is the estimate at a location and Z(u) is the true value at that 

location.  Expanding this out and replacing Z(u)* with the relation from (1.1) we get the equation shown in 

(1.3).  Note that 2
{[ ( )] }E Z u is now equal to (0)C  based on the relation { }( ) ( ) ( )C h E Z u Z u h= +i  which 

is the definition of covariance.  Replacing other terms with their equivalent covariance notations we get 

equation (1.4).  In order to minimize this equation we take the derivative with respect to the weights, λi, 

and setting this equal to zero we get (1.5).  This system of n equations with n unknown weights is known 

as the simple kriging system.  These weights, when used to generate an estimate of the variable at the 

unsampled location (1.1), give the minimized error variance.  The corresponding minimized estimation 

variance (which is what we are interested in for this project) is defined in (1.6) (Deutsch, 1998). 

 { }* 2
[ ( ) ( )]E Z u Z u−  (1.2) 

 
1 1 1

{ ( ) ( )} 2 { ( ) ( )} (0)
n n n

i j i j i i

i j i

E Z u Z u E Z u Z u Cλ λ λ
= = =

⋅ − ⋅ ⋅ +∑∑ ∑  (1.3) 
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The equation given in (1.6) defines the estimation variance at one unsampled location.  For this project, 

we are interested in minimizing the sum of the estimation variances at every unsampled location: 

 2

, ,

1

min ( ) min (0) ( , )
nloc nloc ndat

SK i i

i

ObjFun u C C u uα α α α
α α

σ λ
=

 
= = − 

 
∑ ∑ ∑ i  

Where nloc is the number of unsampled locations (in this case, 400) and ndat is the number of data 

considered at each unsampled location (for this example, 25).  The C(0) term is a constant and can be 

removed yielding the pseudo-variance: 
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Instead of minimizing a negative objective function, a positive function can be maximized with the same 

result.  For this study, the author will maximize the positive function. 

 

Base Case 

In order to compare the different optimization techniques, a base case is established based on knowledge 

of the optimum sample locations.  The base case is for a field with no direction of continuity (isotropic).  

An equilateral sample grid and a square sample grid are considered for the base case.  The objective 

function value for the square sample grid (Figure 3a) is 290.6 while the objective function value for the 

equilateral sample grid (Figure 3b) is 288.1.  This conflicts with the findings of McBratney et.al (1981) 

which demonstrated that the equilateral sample grid would provide the optimal solution.  The reason for 

this conflict is an artifact of the model, namely the edge effects.  If more samples were taken such that 

the samples extended past the grid domain, the equilateral sample grid would provide the more optimal 

solution.  In any case, the values are very similar and a base case has been established against which the 

various optimization methods may be compared.   
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Figure 3:  Pseudo-variance base case values for the a) square sample grid and b) equilateral sample grid.  

Note the edge effects along the top and bottom of plot b.   

Optimization Algorithms 

It is now useful to examine the details of how each optimization algorithm is applied.  Two metrics are 

used to evaluate the performance of each method.  One is the improvement in the objective function for 

a given number of iterations of the algorithm and the other is the number of objective function 

evaluations required to achieve a set value for the objective function.  These values are different since 

one iteration of the algorithm may require multiple evaluations of the objective function. 

Genetic Algorithm 

The genetic algorithm uses binary representations of the decision variables concatenated together into 

one long string called a chromosome.  Cross-over and mutation operations are performed on the 

chromosomes in an effort to create a chromosome with increased fitness.  The decision variables in this 

case are the coordinates of the sample points.  In order to represent the coordinates in binary, a decision 

had to be made regarding the precision of the coordinates.  A trade-off must be made between 

computational efficiency and decision variable precision.  Increased precision in the decision variables 

results in longer chromosomes and vice versa.  For this study, a precision on the order of ~5m is deemed 

appropriate.  This enables each sample coordinate to be represented with 16 bits; 8 bits for the x-

coordinate and 8 bits for the y-coordinate.  An 8-bit binary number is capable of representing 256 

separate values, from 0 to 255.  Therefore, the x- and y-coordinates of the sample points will have a 

precision of 1000/256 = ~3.9m.  This is within the required 5m precision.  This is the equivalent of having 

512 possible sample locations from which the optimal 25 are chosen.   

 This algorithm is implemented by randomly generating 50 coordinates (x- and y-coordinates for 

the 25 sample locations) each for 10 different ‘individuals’ in the population.  These coordinates are 

converted to their binary representations, or chromosomes.  The chromosomes have a length, L, of 400 

bits (50 coordinates, 8 bits each).  The fitness of each of these 10 individuals is evaluated.  The roulette-

wheel scheme is used to select 10 parents from the population.  These 10 parents are then randomly 

paired to create 5 pairs.  The cross-over probability of 0.9 is applied to determine whether the cross-over 

operation is performed for each pair.  The mutation probability of 0.05 is applied to determine whether 

the mutation operation is performed for each individual.  The fitness of these 10 individuals is evaluated 

and the process repeats.   

 As the algorithm proceeds, a record of the most fit chromosome is kept as the best-so-far.  Each 

new population is checked to see whether the best-so-far is surpassed by any of the population.  If there 

is no improvement within the population, that is, if none of the individuals in the new population are 

more fit than the best-so-far, the least fit individual is replaced with the best-so-far.  This process of 

‘elitism’ aids the algorithm in the determination of the best configuration.  The algorithm proceeds for a 

predetermined number of iterations or until the objective function experiences no further improvement.   

The result of applying the genetic algorithm with a population of 10 individuals is shown in Figure 4b.  The 

objective function was increased from an initial best value of 265.8 to 287.5 in 1000 iterations, very near 

the base case optimum of 290.  The objective function was evaluated 3621 times to reach a value of 285. 
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Figure 4:  a) Initial best and b) final result produced by the genetic algorithm with a population of 10. 

 

The same process was repeated using a population of 20 individuals.  This modification allowed the 

objective function to be increased even further to 289.8 in 1000 iterations.  The objective function was 

evaluated 5661 times to reach a value of 285. 

Nelder-Mead Simplex 

This optimization method is a derivative free method which uses only the objective function evaluation.  It 

uses the concept of a simplex which is a geometric object  determined by an assembly of n+1 points, p, in 

the n dimensional space (Chong et.al, 2008).  As applied to this problem, each point, pi, consists of the x,y 

coordinates of the n data.  There will, therefore, be 2n+1 initial configurations, or points.  These points will 

be generated randomly within the field domain.  The objective function is evaluated for the 2n+1 

configurations.  The centroid of the 2n best points is calculated and the reflection move performed.  The 

objective function is evaluated for the new point determined by the reflection move.  This value is 

compared to the other objective function values.  This comparison determines whether the expansion, 

outside contraction, or inside contraction move is performed.  If the contraction moves both fail, the 

shrinkage move is performed (Chong & Zak, 2008). 

 For this study, 51 different configurations of the 50 coordinates are randomly generated.  The 

objective function for each of these configurations is determined.  The centroid of the 50 best 

configurations is calculated and the reflection move performed.  The objective function of the 

configuration created by the reflection move is evaluated.  If this value is better than any of the other 

values, the expansion move is performed.  If it is better than the second worst configuration and worse 

than the best configuration, this configuration is kept and replaces the worst.  If it is better than the worst 

and worse than the second worst, the outside contraction move is used.  If it is worse than the worst, the 

inside contraction move is performed.  If both contraction moves are unable to generate an improved 

configuration, the shrinkage move is used where all coordinates are moved half the distance towards the 

best configuration.  The results of applying the Nelder-Mead Simplex method are shown in Figure 5.  The 

objective function value is increased from an initial best of 273.6 to 288.9 in 1000 iterations.  The 

objective function was evaluated 643 times to reach a value of 285.   

  
Figure 5: a) Initial best and b) final configuration for the Nelder-Mead Simplex method. 
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Hooke Jeeves Pattern Search  

This optimization method is also a derivative free method.  It uses a variety of moves to locate the optimal 

point.  It is similar to exploring unknown territory in the fact that it moves to a base point, explores the 

surrounding area, then moves to a new base point to explore that area.  The algorithm starts with a 

randomly generated base point.  The exploratory move is performed first where each decision variable is 

visited in turn, increasing and decreasing the value of that variable by a certain step size and keeping the 

value that gives the best objective function value. Once each decision variable is visited, a new base point 

is determined based on the current and previous base point.  This is called the pattern move.  The 

exploratory move is then repeated at the new base point.  If the exploratory move is unable to locate a 

better point, the step size is reduced and the exploratory move performed again.  This procedure is 

repeated until the step size is sufficiently small.   

The algorithm is applied to this problem by randomly generating 25 x- and y-coordinates.  Each of these 

50 coordinates is then visited in turn and adjusted up and down by a step size of 25m.  This exploratory 

move locates a new base point.  This base point and the starting point are used to locate the third base 

point.  The exploratory move repeats at this base point and the algorithm proceeds, reducing the step 

size, until the step size is less than 0.5m.   

The results of applying the Hooke Jeeves method are shown in Figure 6.  The objective function value 

increases from 253.3 to 290.8 in 1000 iterations.  Interestingly, this value is achieved after only 10 

iterations of the algorithm.  To reach a value of 285, 222 evaluations of the objective function are 

performed.   

  
Figure 6: a) Initial and b) final configurations for the Hooke Jeeves method. 

Randomized Search 

This optimization method is also a derivative free method which uses only the objective function 

evaluation.  It proceeds by considering random sample locations.  A random initial configuration is created 

and the objective function evaluated for that configuration.  The next configuration is then randomly 

generated and its objective function value determined.  If the objective function value of the second 

arrangement is an improvement over that of the first, the second configuration is kept.  If the objective 

function value of the second configuration is not an improvement, it is rejected and a new configuration is 

chosen.  This process proceeds until no further improvements can be made or until a preset number of 

iterations is reached.   

For this study, 25 sample locations are randomly generated within the 1000 x 1000m field.  The value of 

the objective function is determined for this configuration.  25 different sample locations are then 

randomly generated and the objective function value determined for this configuration.  The algorithm 

proceeds in this manner, keeping track of the best-so-far configuration, until the preset number of 

iterations is reached.  The best-so-far at the completion of the algorithm is the assumed optimal solution.   

The objective function increases from 253.3 to 276.3 in 1000 iterations.   After 100,000 objective function 

evaluations, the value was only 279.4.  The results of applying this method are shown in Figure 7.   

Modified Randomized Search 

Consider the step in the randomized search algorithm where a new point is generated.  For an n 

dimensional problem, n new values are generated which define the point.  This part of the algorithm will 

be modified where instead of generating n new values to create a new point, only 1 of the n dimensions 
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will be changed from the previous point.  The dimension to be changed will be randomly generated as 

well as the value for this dimension.  The other n-1 dimensions will be held constant and the objective 

function evaluated for the new point.  If the objective function is improved the point is kept, otherwise it 

is rejected and the process repeated. 

 
Figure 7:  a) Initial and b) final configurations for the randomized search method. 

For this study, 25 sample locations are randomly generated within the 1000 x 1000m field.  The objective 

function value for this configuration is evaluated.  One of the 50 coordinates is randomly selected and a 

new value randomly generated.  The objective function for this new configuration is evaluated.  If it is 

improved, the change is kept, otherwise the change is rejected.  The process repeats until the specified 

number of iterations is reached, keeping track of the best-so-far configuration.  The best-so-far at the 

completion of the algorithm is the assumed optimal solution.   

 The objective function increases from 253.3 to 288.6 in 1000 iterations.  It takes 128 objective 

function evaluations to reach a value of 285.  The results of applying this method are shown in Figure 8.   

 
Figure 8:  a) Initial and b) final configurations for the modified randomized search method. 

Gradient 

The gradient method is an optimization method which depends on the function and gradient values at 

each iteration (Chong et.al, 2008).  As such, it is necessary to find the gradient, or first derivative, of the 

objective function with respect to the data locations.  For this method, I have decided to limit the number 

of data considered to two.  This will greatly simplify the determination of the gradient of the objective 

function.  The objective function now becomes: 

max ( , ) ( , )
nloc

i i

i

ObjFun C u u C u uα α β βλ λ = + ∑  

Note the notation change where i now represents the unsampled 

locations, α represents the closest data to the location, and  

represents the next closest data to the location.   

In order to derive the gradient, we must first examine how the 

covariance is defined.  As mentioned previously, the definition of 

covariance is { }( ) ( ) ( )C h E Z u Z u h= +i .  It is common to define Figure 9:  Covariance structure for 

the gradient method. 
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covariance, C, as a function of separation distance, h.  In order to keep the calculation of the objective 

function simple, I have chosen to employ a linear relationship between C and h
2
 as shown in Figure 9.  This 

will eliminate the need for the calculation of the square root of the anisotropic distance, h
2
 as defined in 

(1.7) where ax, ay, and az represent anisotropic distances.  For this study, I will only be considering 2-D 

data placement, we can therefore drop the z component of (1.7).  We can convert this calculation for h
2
 

into matrix notation as shown in (1.8) where V represents the vector between points P and P and R 

represents the anisotropic rotation matrix taking into account both the magnitude and direction of 

anisotropic continuity. Covariance between any two points can then be calculated quickly using th (1.9) 

where m represents the slope of the C vs. h
2 

plot and b represents the C-axis intercept.   

 

22 2

2 x y z
h

ax ay az

    
= + +    
    

 (1.7) 

 
2 T T

h V R RV=  (1.8) 

 ( )max ,0
T T

C mV R RV b= +  (1.9) 

It is also important to examine how the weights, , are defined.  We already saw in (1.5) how to solve for 

the weights.  We must solve for n weights when n data are considered.  In order to simplify calculations, I 

have decided to limit the number of data considered to two.  This allows me to solve for the weights 

ahead of time based on the relations shown in (1.10)-(1.12) where C12=C21 and C11=C22=1.    

 
1,11 12 1
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    
=     
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λ

−
=

−
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Now that the weights and covariance functions are defined, we can take the derivative of the objective 

function to obtain the gradient.  We take the derivative with respect to the data locations, P.  If we let O 

represent the objective function, then the derivative of the objective function is defined as: 

 
ii

i i

k k k k k
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C C

P P P P P

β βα α
α α β β

λλ
λ λ

∂ ∂∂ ∂∂
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Where: 
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 (1.16) 

 i

k k k k

CC
C

P P P P

β αβα α
αβ β

λλ
λ

∂ ∂∂ ∂
= − −

∂ ∂ ∂ ∂
 (1.17) 

With the gradient defined, we have everything we need to perform the gradient algorithm.  It will 

proceed as follows: 

1. An initial point or configuration is chosen 

2. The gradient at each point is calculated, the search direction is taken to be the negative of the 

gradient.  If the gradient is zero, we have found the optimal configuration and the algorithm 

terminates. 

3. The step size at each point is determined using the golden section 1-D search 

4. The next point is determined by adding the product of the step size and direction to the previous 

point 
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5. The iteration number is increased and we return to step 2 

As mentioned, the objective function is calculated differently for this method than the others.  As such, 

direct comparison of objective function values with those from the other methods is not possible.  A new 

base case was established for this method based on an equilateral grid.  The objective function value for 

this configuration is 272.  The results of applying this method are shown in Figure 11.  The objective 

function value increased from an initial value of 204.3 to 266.3 with 17 iterations of the algorithm.  The 

objective function stopped increasing at this.  The  

  
Figure 11:  Results of applying the gradient method.  a) Initial and b) final configurations. 

objective function was evaluated 9550 times during these 17 iterations.  The line search to determine the 

step size requires many evaluations of the objective function.   

 

Discussion 

The optimization results for the five derivative-free methods are summarized in Table 1.  The randomized 

search method is the only truly poor method among them.  Even after many thousands of iterations, the 

algorithm was unable to approach an optimal solution.  This is likely due to the fact that no 

neighborhoods were used in the generation of new points.  Each configuration was completely random 

with no consideration of previous configurations.  The other four methods performed comparably well at 

generating optimal configurations.   

Table 1:  Optimization results for the five derivative-free methods. 

 
The genetic algorithm was the next poorest method after randomized search.  It required many times 

more iterations than the best three methods.  Another drawback of this method is the lack of precision.  A 

given string of binary digits is capable of representing only a limited number of values.  The trade-off 

between efficiency and precision would require reduced efficiency to gain increased precision.   

 The Hooke Jeeves, Nelder-Mead and modified randomized search methods performed 

comparably.  Each generated an optimal solution with great efficiency.  The Hooke Jeeves was determined 

to be the most efficient method.  It generated the most optimal solution with a minimal number of 

objective function evaluations.  Although the modified randomized search was able to reach the threshold 

of 285 with less function evaluations, the Hooke Jeeves method is deemed better due to its ability to find 

a more optimal solution.  The modified randomized search method required more than 3200 iterations to 

reach a solution as optimal as that created by the Hooke Jeeves method in 10 iterations.  The Nelder-

Mead method was unable to reach an equivalently optimal solution after 10000 iterations.  This disparity 

is reduced by realizing that each iteration of the Hooke Jeeves method required approximately 75 
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objective function evaluations compared to the 1.06 evaluations per iteration for the Nelder-Mead 

method.   

 The gradient method performed well in that the objective function increased a great deal with 

few iterations of the algorithm.  It has two main disadvantages: the optimal value is not approached 

before the objective function levels off; a large number of objective function evaluations are required to 

determine the step size.   

 

Conclusions 

Field measurement design is an important aspect of many engineering studies.  Many different 

optimization methods have been applied to the solution of numerous objective functions.  A number of 

optimization methods had not been applied to this problem.  This study was performed to determine the 

suitability of the methods that had not been tried (Nelder-Mead, Hooke Jeeves, randomized search, 

modified randomized search, gradient) and to compare to a method that had (genetic algorithm).  The 

Hooke Jeeves pattern search method was determined to be the most appropriate for optimizing the 

locations of the samples.  The modified randomized search and Nelder-Mead simplex methods also 

performed well.  It is recommended that the Hooke Jeeves method be applied to the determination of the 

optimal FMD in the presence of varying continuity directions. 

 

References 

Andricevic, R.  1990.  Cost-effective network design for groundwater flow monitoring.  Stochastic Hydrol. Hydraul. 

Ayyub, B.M., McCuen, R.H. 1990, Optimum Sampling for Structural Strength Evaluation.  Journal of Structural 

Engineering. V.116. No.2. 

Boisvert, J.B., Manchuk, J.G., Deutsch, C.V.  2009.  Kriging in the presence of locally varying anisotropy using non-

Euclidean distances.  Mathematical Geosciences. In press.   

Carerra, J., Usunoff, E., Szidarovszky, F.  1984.  A method for optimal observation network design for groundwater 

management.  Journal of Hydrology.  73.   

Catania, F., Paladino, O.  2008.  Optimal sampling for the estimation of dispersion parameters in soil columns using an 

Iterative Genetic Algorithm.  Environmental Modeling and Software.  24. 

Chong, E.K.P., Zak, S.H. 2008.  An Introduction to Optimization.  3
rd

 Ed.  John Wiley & Sons.  New Jersey.   

Criminisi, A., Tucciarelli, T., Karatzas, G.P.  1997.  A methodology to determine optimal transmissivity measurement 

locations in groundwater quality management models with scarce field information.  Water Resources Research.  

V.33. No.6. 

Deutsch, C.V., Journel, A.G.  1998.  GSLIB: Geostatistical Software Library and User’s Guide.  Oxford University Press.  

New York. 

Fiering, M.B.  1965.  An optimization scheme for gaging.  Water Resources Research.  V.1. No.4. 

Hudak, P.F., Loaiciga, H.A.  1992.  A location modeling approach for groundwater monitoring network augmentation.  

Water Resources Research.  V.28. No.3. 

Hudak, P.F., Loaiciga, H.A.  1993.  An optimization method for monitoring network design in multilayered groundwater 

flow systems.   Water Resources Research.  V.29. No.8. 

Loaiciga, H.A. 1989.  An optimization approach for groundwater quality monitoring network design.  Water Resources 

Research.  V.25 No.8 

McBratney, A.B., Webster, R., Burgess, T.M.  1981.  The design of optimal sampling schemes for local estimation and 

mapping of regionalized variables – I.  Computers & Geosciences.  V.7.  No.4. 

Meyer, P.D., Brill, E.D. 1988. A Method for Locating Wells in a Groundwater Monitoring Network Under Conditions of 

Uncertainty.  Water Resources Research.  V.24. No.8. 

Meyer, P.D., Valocchi, A.J., Eheart, J.W. 1994. Monitoring network design to provide initial detection of groundwater 

detection.  Water Resources Research.  V.30. No.9. 

Rouhani, S.  1985. Variance reduction analysis.  Water Resources Research.  V.21. No.6. 

Rouhani, S., Hall, T.J. 1988.  Geostatistical schemes for groundwater sampling.  Journal of Hydrology. 103. 

Storck, P., Eheart, J.W., Valocchi, A.J. 1997. A method for the optimal location of monitoring wells for detection of 

groundwater contamination in three-dimensional heterogeneous aquifers.  Water Resources Research.  V.33. No.9 

Virdee, T.S., Kottegoda, N.T. 1984. A brief review of kriging and its application to optimal interpolation and 

observation well selection.  Hydrological Sciences Journal.  V.29.  No.4. 

Zhang, Y., Pinder, G.F. 2005. Least Cost Design of Groundwater Quality Monitoring Networks.  Water Resources 

Research. V.41. 


