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The Structure of Nodes Visited in Sequential Simulation 
 

Yupeng Li and Clayton V. Deutsch 

 

Sequential simulation is commonly employed in the context of Gaussian, indicator and multiple point 

statistics methods.  Detailed analysis of sequential simulation is important.  This short note addresses the 

configurations of previously simulated nodes encountered as sequential simulation proceeds.  This is 

viewed as a homogenous point process. 

 

Introduction 

Sequential simulation is a powerful and widely used stochastic simulation technique to sample 

multivariate probability spaces.  For a given multivariate model, sequential simulation can be used to 

determine the conditional probability of a single random variable given any number of conditioning values.  

From a practical point of view, it is the basis for sequential indicator simulation (SISIM) (Deutsch and 

Journel, 1998) or single normal sequential simulation (SNESIM) (Strebelle, 2002) for discrete variable and 

sequential Gaussian simulation (SGSIM) (Deutsch and Journel, 1998) for continuous variables. 

 The sequential simulation methodology is very straightforward. Most theory researches are 

focused on how to model the multivariate probability space and determine the conditional probabilities.  

Some practical details such as the search radius and number of conditioning data have been investigated 

(McLennan, 2002; Zanon and Leuangthong, 2004).  The data pattern changes continuously along the 

random path in the sequential simulation process.  In this paper, the random path is investigated to find 

the most important and representative data configurations. 

 

Random Path 

Sequential simulation consists of the following four steps: (1) choose the research domain and discrete it 

into grids, (2) define a random path to visit every grid in the research domain, (3) at each grid node: a) 

search to find nearby data and previous simulated nodes; b) calculate the conditional distribution for the 

current grid node; c) perform Monte Carlo simulation to obtain a single value from the distribution, and (4) 

repeat step 3 until every grid node has been visited. 

 A set of equally probability realizations are simulated with different random paths and different 

random drawings from the conditional distributions.  A random path is used to avoid artifacts.  Since the 

simulation path is random, the number of previous simulated nodes within a certain area will be 

statistically independent.  The random path picking process in sequential simulation can be viewed as a 

homogenous point process (complete spatial randomness) (Bar-Hen and Picard, 2006). 

 

Homogeneous Point Process  

The Poisson process is mainly used where data are correlated over time.  A homogeneous Poisson process 

is characterized by a rate parameter λ , also known as intensity, such that the number of events in time 

interval ( , ]t t τ+  follows a Poisson distribution with associated parameter λτ : 
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However, for data in two or more spatial dimensions, no such ordering is generally present.  This is the 

primary difference between a Poisson process in time series and spatial data.  In spatial statistics, a 

homogeneous Poisson process is a point process such that the random variable ( )N B counting the number 

of events within B follows a Poisson law with parameter: ( ( ))vλ B , where λ is the intensity of the process. 
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This shows that the number of points in any bounded set B follows a Poisson distribution with mean

( )λν B , which can be written as: 

( ( )) ( )E N λν=B B                                                                                  (3) 
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In (2)and(3), the parameter λ is the called the intensity or point density of the homogeneous Poisson 

process. It describes the mean number of points to be found in a unit spatial volume.  A specific type of 

the distribution in (2) is the void probabilities describing the probability that there are no points in a 

specific subset B, that is ( ( ) 0)N =p B .  For example, if ( , )b x r=B is the sphere or disc of a radius r  

centred at x , and then ( ( ) 0)N =p B is the probability that this disc does not contain any points.  Based 

on this probability, we can calculate the probability: 

( ) 1 ( ( ) 0)H r N= − =p B                                                                          (4) 

The so called ‘typical’ point of a point process is frequently considered.  This is a point that has been 

chosen by a selection procedure in which every point of the process has the same chance of being 

selected.  In sequential simulation, usually many realizations are simulated for uncertainty evaluation.  

Although, in one realization, the node picking along the random path is determined, when looking at all 

those realizations, along the random path, every point has the same chance of being selected.  Thus, this 

‘typical’ point equivalence to the next picked unsampled location in sequential simulation. 

 The probability in (4) is a distribution function of r and can be interpreted as the probability that 

the distance between the nearest point in the Poisson process to the ‘typical’ point.  The distribution is 

called spherical contact distribution function or location-to-nearest-point distribution function (Illian, 

2007, p.68, p.75).  If the point process is a homogeneous Poisson process, the distribution will be: 
( )
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In Equation(5), ( )ν B is the volume of this subset volume of the whole spatial volume. For example, in 2d 

case, it will be
2rπ , the spherical contact distance distribution will be: 
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Generally, in 2D case, the distribution function ( )
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and the corresponding probability density functions are 
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For 3D case, the subset of the volume ( )ν B will be 
34
3

rπ . 

 As stated above, given a certain previous simulated nodes, the distribution of them in the spatial 

space can be viewed as a homogeneous point process.  Thus, in sequential simulation, the intensity of the 

point process is defined as the number of previous simulated nodes per unit area and can be 

approximated by the data density calculated from the previous simulated nodes and hard data. For 

example, assuming there is no hard data, an unconditional simulation will be applied in the domain 

composed by nxyz grids, the data density will be 1
nxyz

 at the beginning.  As the simulation goes on, more 

and more previous simulated data will be added into conditioning data. Thus, the density will reach to 1 

when all the nodes are simulated.  Although each step is a homogeneous point process, in the whole 

process, the intensity for each homogeneous point process increases consistently. Figure 1 is an example 

of point distribution at four different simulation stages.  
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Figure 1 four homogeneous point process with different data density in sequential simulation 

 

Random Path as a Homogeneous Point Process 

Firstly, what we calculate the mean number in certain search radius for each simulation step that is 

looked at as a homogeneous point process.  Based on Equation(3), using different search radius 

( R n gridsize= i ), the mean number (in 2D and 3D) can be calculated as listed in Table 1 and Table 2.  

The number increase quickly as the search radius increases. 

 

Table 1: theoretical mean data number in a certain research area given different data density (2D case) 

 
 

Table 2: theoretical mean data number in a certain research area given different data density (3D case) 

 
 

0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.3 0.4 0.5

5*gridsize 3 4 5 6 7 7 11 15 23 31 39

6*gridsize 5 6 7 9 10 11 16 22 33 45 56

7*gridsize 7 9 10 12 13 15 23 30 46 61 76

8*gridsize 10 12 14 16 18 20 30 40 60 80 100

9*gridsize 12 15 17 20 22 25 38 50 76 101 127

10*gridsize 15 18 21 25 28 31 47 62 94 125 157

11*gridsize 19 22 26 30 34 38 57 76 114 152 190

12*gridsize 22 27 31 36 40 45 67 90 135 180 226

13*gridsize 26 31 37 42 47 53 79 106 159 212 265

14*gridsize 30 36 43 49 55 61 92 123 184 246 307

15*gridsize 35 42 49 56 63 70 106 141 212 282 314
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The distribution of the minimum distance (to the first closest previous node) is of interest.  For each data 

density, the mean distance to the first closest previous nodes can be calculated from Equation (7) or 

Equation(8).  Figure 2 shows 8 different probability distributions with different data densities in a 2D case.  

As the simulation goes on, the mean distance of the first close data decreases to a very small distance. 

 

 
Figure 2 the probability distribution of the first closest distance in eight different data density in the 

sequential simulation process stage 

 

From the distribution in Figure 2, two statistics for each homogeneous point process can be obtained: the 

mean distances and its probability. Because all the nodes in the simulated area are independently to each 

other during the picking process, the mean distances to the first close previous node will also be a 

function of the data density in the whole sequential simulation process which can be written as: 

( )r f λ=                                                                                  (9) 

The mean distances and the maximum probabilities for all the mean distance are plotted in Figure 3. 

 
Figure 3 the mean distance of the minimum distance to the previous simulated nodes and its probability 

in the simulation process 
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As shown in Figure 3, during the whole simulation process, the very short distance to the first close 

previous node has a higher probability to exist than the larger mean distance.  Clearly, those simulated 

nodes in the early stages will have a higher probability to be used in the later stages of simulation.  In 

other words, the influence area of the first close previous nodes is decreasing as the simulation goes on. 

Based on this point, the importance of the first close node can be defined as the influence area or volume 

in 2D and 3D and denoted as: 

max

, 2 3
d

d
rS d or

r
= =                                                                             (10) 

In Equation(10), r will be the mean distance to the first close previous node, 
max

r is the maximum 

distance in them. This importance (the influence area) will decrease with the data density increase as the 

simulation goes on as shown in Figure 4. 

 
Figure 4 the importance of the first close previous node in 2D and 3D case 

 

Conclusions 

For the 2D case, the mean distance has a very low probability in the sequential simulation process when 

data density is smaller than 0.05, their importance is more critical than those in later stage when data 

density is larger than 0.05.  While for 3D case, the critical data density is about 0.01 where the most 

importance nodes will be picked for later simulation using.  After the data density is larger than 0.01, the 

importance of the nodes changes little along the simulation path.  Thus, we should pay more attention to 

the simulation stage when data density is lower than 0.05 for 2D case and 0.01 in 3D case. 

 Given the importance of data density in 2D and 3D, the maximum mean probability distribution 

shows that those data configuration in search area less than 15 gridsizei  for 2D case and 10 gridsizei  

for 3D case will have the probability larger than 0.15 and 0.2 respectively which is far more larger than 

those distances that larger than 15 gridsizei  for 2D case and 10 gridsizei  for 3D case. So in 2D case, 

the representative and most importance data configuration data will be those that data density is about 

0.05, the mean distance of the first close previous node is about15 gridsizei . In 3D case, the 

representative and important data configuration will be those that data density is about 0.01, the mean 

distance of the first close previous node is about10 gridsizei . 

 Finally, given the most important and representative first close previous node, the mean number 

in the influenced area will be 35 and 30 in 2D and 3D case respectively.   This research assumes the point 

process is in an infinite spatial space which is not exactly correct; nevertheless, the results of this research 

can be used as a basic guide when designing a detailed algorithm comparison using sequential simulation.  
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