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A Conditional Finite Domain (CFD) Approach to Calculate 

Variogram Uncertainty 
 

Behrang  Koushavand and Clayton V. Deutsch 

 

The variogram is central to many geostatistical studies.  Due to limited data available in the early stages of 

modeling, there is considerable uncertainty in all statistical parameters including the variogram.  The 

uncertainty in the experimental variogram should be quantified and transferred into subsequent modeling.  

All previously studied methods to assess variogram uncertainty are unconditional to data values and just 

depend on data locations.  Therefore, the uncertainty is unrealistically high.  A conditional finite domain 

based variogram uncertainty algorithm is presented that is more robust and realistic.  The configuration of 

sampled data is kept the same new configurations are generated by translation and rotation of original 

data.  A number of realizations are generated for each of new configuration conditional to the original 

data, then the experimental variogram is calculated for each configuration and realization.  The variance 

of each lag is calculated.  The calculated variogram uncertainty is reasonable. 

 

Introduction 

Variogram estimates from a limited data set are uncertain.  That uncertainty can be estimated, 

incorporated into the results, and used in applications.  Variogram uncertainty has been considered by 

different authors.  Webster and Oliver (1992), Müller and Zimmerman (1999) and Bogaert and Russo 

(1999) measured the variogram uncertainty in sampling schemes and suggested different methods to 

minimize this uncertainty.  Cressie (1985), Ortiz and Deutsch (2002), and Pardo-Igúzquiza and Dowd 

(2001) suggested similar expressions for the covariance matrix of experimental variogram estimates to 

the ergodic variogram (Marchant and Lark 2004). 

 The semivariogram (often called the variogram for brevity) is defined under a second order 

stationarity assumption as (Matheron, 1971): 

                                                                      ( ) ( ) ( ){ }21
E Z Z

2
γ = + −  h u h u                                                      (1) 

It is estimated by the method of moments (Journel and Huijbregts, 1978): 
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where ( )N h is the number of pairs of values for the separation vector h . 

 For a fixed set of K lag vectors, the variance–covariance matrix of the experimental variogram is a 

K×K matrix Σ . The pq  element is (Marchant and Lark, 2004): 

                                                                       [ ] ( ) ( )p qpq
ˆ ˆCov ,Σ h h = γ γ 

                                                             (3) 

The diagonal elements give the variance of the variogram estimates: 

                                                                  [ ] ( ) ( ) ( )( )p p ppp
ˆ ˆ ˆCov , VarΣ h h h = γ γ = γ 

                                         (4) 

 Several authors (Cressie, 1985; Ortiz and Deutsch, 2002; Pardo-Igúzquiza and Dowd, 2001) 

assumed the distribution of each lag is Gaussian, and defined by a mean corresponding to the ergodic 

variogram ( )hγ , and the variance of each lag, given by equation (4). Koushavand (2008) et.al used a two 

parameter (shape and scale) Gamma distribution that is more flexible, since a gamma distribution is a 

general form of a Gaussian distribution.  This distribution has only positive values that fits better the 

squared differences of the variogram.  It is also asymmetric with flexibility to fit the actual distribution 

shape.  The variance covariance matrix of the variogram has been derived analytically and the variogram 

joint uncertainty has been generated by correlated gamma distributions.  They also present a spatial 

bootstrap method that converges to the analytical results but is faster with no data limitations. 

 

 



Paper 411, CCG Annual Report 11, 2009 (© 2009) 

411-2 

Methodology 

The Conditional Finite Domain (CFD) method is used to generate conditional realizations inside the 

domain.  The sample data configuration is fixed and randomly rotated and translated to generate new 

configurations inside the domain.  A maximum radius (RMax) parameter controls the maximum 

translation distance.  Rotation is allowed within 360 degrees if there is no strong anisotropy in the 

variogram.  New data are simulated conditional to the original data values.  Experimental variograms are 

calculated using simulated data location.  This procedure is repeated to a reasonable set of data 

configurations.  The variogram uncertainty will be more realistic than conventional method. 

 The Randrot program has been designed to generate randomly translated and rotated a given 

data locations to generate a new set of configurations.  Figure 1 (top) shows a sample parameter file. Data 

file is the original data locations. Rmax parameter is the maximum radius of translation, irot is a flag for 

rotation, if it set to 0 new configurations will not rotated and if it set to 1 new data configurations will 

generate by translation and rotation. The number of configurations is defined with nconfig.  

 The Pickreal (CCG catalog 2007) program has been modified to read output file of randrot, 

the set of configurations, and extract the specified configuration. 

 Sgsim (Deutsch and Journel, 1998) program was modified to read location being simulated form 

an external file and generate conditional realizations.  Figure 1 (bottom) shows a sample parameter file. 

 

Case Study 

A sub-vertical tabular deposit is drilled to provide data on vein thickness and grades.  The thickness values 

are used here.  The sample locations are presented in Figure 2.  Figure 3 left shows the histogram of 

thickness in original units.  The following isotropic variogram model is fitted to the omni-directional 

experimental variogram of the normal score transformation of thickness: 
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The experimental variogram and fitted model are shown in Figure 3 right.  Figure 4 shows experimental 

variograms of 100 unconditional realizations.  Figure 5 shows location map, histogram and variogram 

reproduction of conditional simulation using original data for 2 data configurations: translated data 

configuration at left and rotated and translated data configuration at right.  To assess the effect of Rmax 

at uncertainty and find the optimum RMax, various number of RMax were  chosen:  

 

0.1,0.5,1,5,10,20,30,40,50,60,70,80,90,100,150,250,250,300,350,400. 

 

50 configurations were generated for each RMax value and for each configuration 50 conditional 

simulation is generate.  For each RMax, 2500 experimental variograms were calculated. The values for 

each lag were extracted and gamma distribution was fitted to each lags.  The results are as expected, that 

is, as the RMax increases, there is greater uncertainty in the variogram.  Also, uncertainty increases as the 

rotation increases. 

 The red data set is quite uncertain and has a trend: high values are in the north and low values at 

south.  The mean of most fitted gamma distributions are greater than expected variogram value which is 

because of trend on the data. 

 

Conclusions 

The data are not directly used in the conventional method for variogram uncertainty calculation.  The CFD 

approach is more realistic and data values have a significant impact on variogram uncertainty.  

Considering rotation for an anisotropic data set will artificially increase uncertainty.  The Rmax value 

should be chosen very carefully based on data spacing. 

 

 

 

 

 



Paper 411, CCG Annual Report 11, 2009 (© 2009) 

411-3 

References 

Bogaert, P., and Russo, D., 1999,  Optimal spatial sampling design for the estimation of the variogram 

based on a least squares approach: Water Resour. Res., v. 35, no. 4, p. 1275–1289. 

Cressie, N., 1985, Fitting variogram models by weighted least squares: Math. Geology, v. 17, no. 5, p. 563–

586. 

Davis, B. M., and Borgman L.E., 1982, A note on the asymptotic distribution of the sample variogram: 

Math. Geology, v.14, no. 2, p. 189–193 

Deutsch, C. V., and Journel, A. G., 1998, GSLIB: Geostatistical software library and users guide, 2nd ed.: 

Oxford University Press, New York, 369 p. 

Journel, A. G., and Huijbregts, C. J., 1978, Mining geostatistics: Academic Press, London, 600 p. 

Koushavand, B., Ortiz, C. J., and Deutsch, C. V., 2008, A Methodology to Quantify and Transfer Variogram 

Uncertainty through Kriging and Simulation, In Center for Computational Geostatistics, paper 301, 

Annual Report 10 

Marchant, B. P., and Lark, R. M., 2004, Estimation Variogram Uncertainty: Math Geology, v. 36, no, 8, p. 

865-898 

Matheron, G., 1971, The theory of regionalized variables and their applications: Ecole des Mines, 

Fontainbleau, France, 211 p. 

Müller, W. G., and Zimmerman, D. L., 1999, Optimal designs for variogram estimation: Environmetrics, v. 

10, no. 1, p. 23–37. 

Ortiz, C. J., and Deutsch, C. V., 2002, Calculation of uncertainty in the variogram: Math. Geology: v. 34, no. 

2, p. 169–183. 

Pardo- Igúzquiza, E., and Dowd, P. A., 2001, Variance–covariance matrix of the experimental variogram: 

Assessing variogram uncertainty: Math. Geology, v. 33, no. 4, p. 397–419. 

Webster, R., and Oliver, M. A., 1992, Sample adequately to estimate variograms of soil properties: J. Soil 

Sci., v. 43, no. 1, p. 177–192. 

 

  



Paper 411, CCG Annual Report 11, 2009 (© 2009) 

411-4 

 
 

 
 

 
Figure 1. Parameter files of randrot (top) and sgs_b (bottom)

                  Parameters for SGSIM 

                  ******************** 

START OF PARAMETERS: 

data.dat                    -file with data 

1  2  0  4  0  0            -  columns for X,Y,Z,vr,wt,sec.var. 

-100.0       1.0e21         -  trimming limits 

0    1                      -transform the data (0=no,1=yes) jackknife. (0=no,1=yes) 

sgsim.trn                   -  file for output trans table 

0                           -  consider ref. dist (0=no, 1=yes) 

histsmth.out                -  file with ref. dist distribution 

1  2                        -  columns for vr and wt 

0.0    15.0                 -  zmin,zmax(tail extrapolation) 

1       0.0                 -  lower tail option, parameter 

1      15.0                 -  upper tail option, parameter 

0                           -debugging level: 0,1,2,3 

sgsim.dbg                   -file for debugging output 

sgsim.out                   -file for simulation output 

SSS                         -number of realizations to generate 

loc.dat                     -file with simulate locations 

5  6  0                     -  columns for X,Y,Z 

69069                       -random number seed 

0     20                    -min and max original data for sim 

40                          -number of simulated nodes to use 

0                           -N/A 

1     3                     -multiple grid search (0=no, 1=yes),num 

0                           -maximum data per octant (0=not used) 

1000  1000 10.0             -maximum search radii (hmax,hmin,vert) 

 0.0   0.0   0.0            -angles for search ellipsoid 

51    51    11              -size of covariance lookup table 

0     0.60   1.0            -ktype: 0=SK,1=OK 

none                        -  N/A 

0                           -  N/A 

1    0.15                   -nst, nugget effect 

2    0.85  0.0 0.0 0.0      -ivt, cc, ang1, ang2, ang3 

250  250  250               -a_hmax, a_hmin, a_vert 

                Parameters for PICKREAL 

                *********************** 

 

START OF PARAMETERS: 

locs.dat                    -file with simulation 

67                          -   number of data 

5                           -realization to write out 

loc.dat                     -file for output realization 

                  Parameters for ROTCOORD 

                  *********************** 

START OF PARAMETERS: 

data.dat                    -file with data 

1   2                       -  columns for original X and Y coordinates 

locs.dat                    -file for output with new coordinates 

50    1                     -Rmax and irot: Flag of Rotation clockwise (0=No, 1=yes) 
100  69069                  -nconfig(number of configurations) and random number seed 
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Figure 2. Location map of samples and thickness content taken from the database red.dat. 

 

 

 

 
Figure 3.  Histogram of thickness in meters and Experimental variogram (dashed line) and fitted model 

(solid line) of normal scores of thickness 

 

 
Figure 4. Unconditional based variogram Uncertainty  
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Figure 5. Location map, Histogram reproduction and variogram reproduction of sconditional simulated for 

translated (left)  and rotated and translated (right) data set.  
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