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Accounting for Nonexclusivity in Sequential Indicator Simulation of
Categorical Variables

S. H. Derakhshan, O. Babak and C. V. Deutsch

Reservoir flow simulation is usually performed on large size grids. The required data for flow simulation, in order to
get reasonable reservoir models, are from very different scales and sources. Facies modeling is performed to better
capture the reservoir heterogeneity. Facies have significant impact on reservoir flow performance. Facies are
treated as categorical variables and they are often considered as mutual exclusive and exhaustive at the scale of
the geological model and flow simulation model. These two assumptions are needed for sequential indicator
simulation (SIS) and most other facies modeling techniques. The assumption that an entire grid block would be just
one facies becomes unreasonable as the scale increases; there is almost certainly some mixing as the scale
increases. This paper addresses how to relax the assumption of exclusivity in large scale and how to account for
mixing of facies at large scales. A methodology is proposed with synthetic and real examples.

1. Introduction

In geostatistical applications, facies simulation is done to capture important large-scale changes in rock
properties. Consider K facies categoriesk = 1,...,K. The facies are called mutually exclusive and exhaustive
because it is assumed that any location u,,a = 1, ..., N, in the reservoir belongs to one and only one of these K

categories, therefore:
5 _ (1, if locationu, in category k
Hugs k) = {O, otherwise
The two assumptions of mutual exclusivity and exhaustivity are summarized by:
i(ug; k) - i(ug;; kK)=0 ; Ve #k'&kk'=1,..,K&a=1,..,N
K

Z ilugk)=1; a=1,..,N

k=1
Arithmetic upscaling of facies converts the categories from discrete indicators to proportions, p,(u,), k =
1,...K&a=1,..,N:

; k=1,...,,K&a=1,..,N

1
i (Uy) =Vf i(ug; k).dv ;k=1,..,.K&a=1,..,N
|4

The facies proportions must sum to one at any scale:

K
Zpk(ua) =1; a=1,.. N
k=1

As an aside, let’s consider the size of a grid cell. Suppose that the grid size of flow simulation is 50 m x 50
m x 1 m which has a volume of 2500 m’ with a total porosity of 15%. Sixteen giant mining haul trucks (with
payload capacity of 363 tons) would be needed just to move the mass of one grid cell.
(Bulk Volume) x (Grain Density) X (1 — ¢prorar)
(Payload capacity of a haul truck)

(Bulk Volume) = 2500 m?3
(Grain Density) = 2.67 tons » = (No.of haul trucks) = 16
rain Density) = 2.

m3
Drotar = 15%
(Payload capacity of a high capacity haul truck) = 363 tons

(No.of haul trucks) =

In many cases, there would be some mixing of facies in such a large volume. To account for nonexclusivity
at large supports, a quality variable, q(u), is defined and modeled to improve the petrophysical models and honor
the nonexclusivity of facies at large scales. Another variable that is used to account for the effect of exclusivity
assumption in petrophysical models is anisotropic distance to nearest other facies, D(u). Once the facies model at
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large support is created with best available practice (SIS, BlockSIS, etc) the gridded model of anisotropic distance to
nearest other facies can be constructed. This variable is used to better model the quality variable.

Quality variable

The quality variable is a function of scale of modeling and facies data at small scale. The quality variable
contains the information of mixing of facies at large scales. The distribution of the quality variable in the model
gives an idea about mixing of facies. In petroleum cases the vertical well logging scale is 0.5 ft (15.24 cm), a
reasonable vertical scaling size for modeling is about 0.5 m-1.5 m (it depends on the application, geometry of
reservoir and production mechanisms/schemes) and the maximum number of facies is about 4-5. Facies data at
fine scale should be upscaled to the modeling scale by major rule, and then these upscaled data are being used to
create the facies model. The upscaled facies variable and the quality variable are calculated simultaneously. The
calculated facies proportions should be converted to a single categorical value. The upscaled categorical value is
the facies that has the maximum facies proportion which is equal to [ where:

pi(u,) = max{p,(uy);k=1,..,K} ;a=1,..,N
The quality variable used for this methodology is derived from K-tuple facies proportion,
Pu),k=1,..,K&a =1,..,N and global effective properties for each facies:

{pe(ug),k=1,..,K&a=1,..,N}
{Kepriwk =1,..,K}
q(ue) = f(pr (W), ., P (W) Koppas o Kegpx)

} => {qluy,),a=1,..,N}

The global effective properties should be chosen in such a way that they show the distinctions between the flow
properties of each facies. The function f(-) can be any reasonable (in terms of geology and flow properties)
function that uses all of the information. In this methodology, f(-) is defined as geometric mean of the global
effective properties for each facies weighted by facies proportions, that is:

K

atug) = | [xa
k=1
Therefore there are two values at each upscaled location data; (1) upscaled facies indicator and (2) quality
variable. The quality variable data will be used to create the quality model for further modeling of petrophysical
properties. The algorithm on how to use quality data will be presented later. The schematic diagram for calculating
quality variable is shown in Figure 1.

The maximum number of possible values that q(u,) can take is a function of the number of facies, K, and
the number of fine scale points used for upscaling of facies (scaling size), V. p,(u,) takes a value from set of
{0,%,%, ...,%, 1}. In the case of upscaling V fine grids in the presence of K facies, the problem is analog to
multiset problem, therefore the number of possible combinations for this case is:

V+K—1)_(V+K—1)!

"wmb=< K—1 )" Vi-K=-1)

Neomp has the same value as the number of possible lattice points on (K — 1)-Simplex (AX~1) with the domain of
V equally spaced values from 0 to 1 for each facies. The first few values of n.,,,;, is tabulated in Table 1. In other
words Ny, Means the total number of combinations that leads to distinct facies proportion of (p4, ..., p); for
example in the case of K = 3 and V = 4 (that leads to n.y;,,;, = 15), the total number of combinations are shown
in Figure 3. The total number of arrangements for each case (combination) can be calculated as:

(Vl, V VK) B ﬁ

K
ZVk=V & 0< V.., Vg<V

k=1
K
/S Z =1
Pk—V Pk =
k=1
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Sequential indicator simulation

Sequential indicator simulation is used to build the facies model in this paper. The existing SIS has been
developed by Alabert (1987) and Journel (1989). SIS consists of visiting each grid node in a random order. At each
grid the nearby data and previously simulated grid nodes are considered for simulation, and then the conditional
distribution is constructed by using kriging. Once the conditional distribution is constructed a simulated facies from
the set of probabilities can be drawn. The input data and parameters that are needed for indicator simulation are
as follows: (1) number of categories and the global facies proportions for each facies, (2) upscaled facies data at
the grid block of simulation (by major rule), (3) indicator variogram models for each facies.

Anisotropic distance to nearest other facies, D(u)

As mentioned calculating the anisotropic distance to nearest other facies is a post-processing step for
facies indicator simulation and is needed to build the quality model. It will be used to classify the distribution of
quality data and calculate the stepwise conditional distribution of quality variable for modeling. Figure 2 shows a
typical facies model (the number of facies is 3, K = 3) with corresponding anisotropic distance to nearest other
facies model. The distance calculated in Figure 2 is based on the anisotropic distance and the minimum distance
for a grid block is obtained based on anisotropic direction. D(u) should have the same spatial configuration as
facies model. The only differences are that in the area with low proportion of uniform facies, D(u) has low values
but the area of influence is high; in contrast in the area with high proportion of uniform facies, D(u) has high
values but the area of influence is low. The low values of D(u) are around the contacts between facies while the
high values are in the area where there are no changes in facies values. For the purpose of stepwise conditional
simulation of quality variable, we need the shortest distance to nearest other facies at data locations. The distance
model, D(u), magnifies the mixing regions (contact regions or borders between two distinct facies). D(u)
calculations are performed on gridded model of facies indicators. Once the nearest grid with different facies is
found, below calculation is done to get D(u) at location u:
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D*(w) = [t)]" - R" - R [r(w)]

Where 7(u) is the nearest distance vector between the two grids with different facies and R is the rotation matrix:

T (W)
(w) = |7, (w)
()
[ Cosa - Cosp — Sina - Sinp - Sing —Sina - Cosp — Cosa - Sinf3 - Sing Cosp - Sing
1 1 1
R= E-Sina-Cosﬁ E-Cosa-Cosﬂ E-Sinﬁ

1 1 1
r—-(—Cosa-Sin<p—5ina-5inB-Cos<p) r—-(Sina-Sin<p—Cosa-Sin[3-Cos<p) r—-CosB-Coqu
2 2 2

The rotation matrix honors the anisotropic ellipsoid. The anisotropy ellipsoid is characterized by five
parameters of (a, 8, @, 11,1,) Where «a is strike, B is dip, ¢ is plunge, r; is the ratio between the minor and major
ranges of correlation and r;, is the ratio between the vertical and major ranges of correlation.

Stepwise conditional transformation

The stepwise conditional transformation is the same as normal score transformation in univariate case. In
the bivariate case the normal transformation of the second variable is conditional to the probability class of the
first variable. The first variable is anisotropic distance to nearest other facies and the second variable is the quality
variable. The Gaussian transformation is used for the grouped data in each probability class separately. Stepwise
conditional transformation removes any correlation between the variables. This type of transformation can be
generalized for any number of variables. Figure 4 shows the steps for stepwise conditional transformation in the
bivariate case. The resulting correlation coefficient between the transformed variables is zero because each class
of the secondary variable is independently transformed to a normal distribution. The property of zero correlation
between the stepwise conditional transformed variables helps to have no cosimulation between the variables (the
transformed variables are simulated independently). Ordering matters in stepwise conditional transformation. The
transformation of primary variable is the same as univariate normal score transformation. The simulation result of
primary variable does not contain any information of secondary variable but the results for secondary variable
honor both primary and secondary variables. In this paper the anisotropic distance to nearest other facies is
considered as primary variable while the quality variable is considered as secondary variable because building the
quality model is the goal in this research and distance model helps to have more realistic model for quality. Since
the distance model shows clearly the mixing regions; therefore, the simulated quality model better captures
mixing of facies. In presence of sparse data, Kernel smoothing technique is applied. In bivariate case the kernel
density is characterized by the bivariate Gaussian probability density function. Kernel smoothing technique helps
to have more data in each probability class. After simulation of stepwise transformed variables, the output models
are back transformed to original units.

As an example for primary and secondary variables for this application, a synthetic case is run and the
scatter plot of the corresponding quality variable and anisotropic distance is plotted in Figure 5. For this synthetic
example, three facies are considered with very different flow properties. The solid lines in the scatter plot show
the pure facies points in the model. There exist points in low quality facies that have high anisotropic distance to
nearest other facies. Based on the distributions of quality and distance, it is concluded that a large portion of the
reservoir belongs to a region with low quality facies and small anisotropic distance to nearest other facies.
Stepwise conditional simulation helps to preserve the non-linear feature that might exist in scatter plot of quality
and distance.

2. Methodology

The steps of the methodology are summarized below:
1. Prepare the needed input data and parameters:
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e  Petrophysical and facies data are needed at fine scale (e.g. well logging scale, 15 cm or 0.5 ft), the
effective properties (e.g. permeability) for each facies, the upscaled grid block size in X, Y and Z
coordinates

e  Group facies together if necessary

2. Upscale facies by major-rule approach and petrophysical properties by averaging (arithmetic, geometric,
power law, etc.) and calculating quality variable at each upscaled location using the facies proportions of
upscaled grid block and the global effective properties for each facies

Model facies with best available practice (e.g. SIS)

Build the gridded model for the distance to nearest other facies from facies model in step 3.

Assign distance values from step 4 to the corresponding data locations and the upscaled data set.

o v kW

Stepwise conditional simulation of quality variable for each facies
e Consider distance variable as primary and quality variable as secondary (apply Kernel smoothing
technique as needed)
e  Conditional transformation of the variables
e  Variogram modeling for stepwise conditional (SC) transformed of quality variable
e Sequential Gaussian simulation (SGS) of the SC transformed quality variable

After obtaining the by-facies quality models, petrophysical variables can be simulated using SGS. The by-facies
simulated quality variable in step 6 should be used as secondary model for modeling of by-facies petrophysical
properties.

3. Application example

The proposed methodology is applied on a real example (Hekla data set) in this section. The Hekla
reservoir is a section of a fluvial deposit in the Statfjord formation offshore Norway; it is divided into two zones of
H1 and H2. The conceptual geological model for Hekla area is depicted in Figure 6. The minimum (across channel)
and maximum (along channel) directions of continuity are N60°W and N30°E respectively (Journel, 1998). Figure 7
shows the locations of wells for Hekla data set. There are 20 wells in the study zone. There are 5 facies in the
reservoir. The cumulative distribution functions (CDFs) of all by-facies porosity and permeability give information
about the quality of reservoir rock. Figure 8 shows the CDFs of core porosity and horizontal permeability data.
From the CDFs it is obvious that facies 2 has high porosity and permeability (pay) while facies 5 has low porosity
and permeability (non-pay). These five categories are defined based on geological considerations and conceptual
models. Table 2 summarizes statistics for facies and petrophysical properties of Hekla data set. Figure 9 shows the
probability density function of facies before and after grouping facies. The facies are grouped into three facies
associates (FA) in order to have more realistic facies model and avoid any artifacts in the model. The grouping of
facies is based on geological interpretations and considerations. The host rock (facies 5) is considered as FA 1, the
border sands (facies 3 and 4) is considered as FA 2 and channel sand (facies 1 and 2) is considered as FA 3. The
indicator variograms are calculated and fitted for these three new facies for the purpose of modeling. Figure 10
shows the indicator variograms for the three facies associates in vertical direction. The global effective property is
considered as average horizontal core permeability for this data set. The global by-facies effective properties
should be chosen in such a way that they capture the distinct flow properties between the facies. The global values
are as follows (see Figure 11):

Kepr1 = 0.0460 mD
Kefro = 424.8521 mD
Keprs = 6405.5000 mD

Facies model for this data set is built using SIS. Stratigraphic transformation is performed to have corrected Z
coordinate. The modeling is performed in H1 layer. The number of grids in X, Y and Z are as follows: 100, 130 and
40 and the grid sizes are 50 m, 50 m and 0.79 m respectively. The resulting 3D model and the associated PDF are
shown in Figure 12. The stepwise conditional simulation is performed, distance variable is considered as the first
variable and quality variable is considered as second variable in stepwise conditional transformation. The by-facies
quality model is constructed using sequential Gaussian simulation (SGS) with stepwise conditional transformed
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quality. The simulated values need to be back transformed to original units. Since there are three facies therefore
three by-facies quality models are constructed. One can use these created by-facies quality model as secondary
variables for simulation of porosity (or any other petrophysical property that reflects flow properties of the
reservoir rock) in SGS. The by-facies models along with the facies, distance and merged models are shown in Figure
13 for a fixed slide in XY plane. Figure 14 shows three different slides of facies model and the corresponding
distance to nearest other facies and quality model (note that the quality model in this figure is merged based on
three by-facies model and the created facies model).

4. Conclusion

The reality of nonexclusivity in large scale facies models is honored by constructing by-facies quality
models. The quality models can be used as secondary variable in SGS for petrophysical variables. As a future work,
this methodology should be validated with flow simulator. It can be compared to conventional approaches for
petrophysical simulation. The quality map is a reasonable indicator of mixing and accounts for the closeness to
facies transitions. The distance variable considers the contacts between facies (where the probability of mixing is
high) and regions where there is only one facies. Stepwise conditional transformation is used to preserve the non-
linear features between distance and quality. The results of conventional approaches and this methodology for
petrophysical properties are the same in the regions with pure facies. The problem of nonexclusivity appears
mostly in the region where facies are mixed.

Although the application is straightforward, testing of the methodology through flow simulation and by
comparing to very high resolution models is still required.
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3 1 4 | 10| 20 | 35

4 1 5 |15 | 35|70

5 1 6 | 21 | 56 |126

+K-1

Table 1 first few values for n .y, = (VK_l

Facies1 |Facies2 |Facies3 |Facies4 |Facies5
Global Proportion 0.0166 0.2383 0.0512 0.0863 0.6076
mean 0.2294 0.2829 0.2398 0.2285 0.1792
Core Porosity std. dev. 0.0875 0.0663 0.0767 0.0734 0.0755
coef. of var. 0.3815 0.2343 0.3200 0.3211 0.4213
mean 146.6634| 524.4570| 650.3132| 132.0820| 110.8002
Core K_h std. dev. 163.9453| 795.7706|1480.7098| 462.4265| 337.6700
coef. of var. 1.1178 1.5173 2.2769 3.5011 3.0476
mean 93.6042| 371.6645 67.3343| 241.6001| 159.5658
Core K_v std. dev. 115.2620| 680.8011| 157.9108| 515.7867| 363.1393
coef. of var. 1.2314 1.8318 2.3452 2.1349 2.2758
mean 0.1433 0.2525 0.1455 0.10°0 0.0413
Log Porosity std. dev. 0.0831 0.0671 0.0778 0.0871 0.0631
coef. of var. 0.5799 0.2657 0.5346| 0.7992 1.5273
mean 66.5841)6050.1439| 126.8849| 15.2380| 0.4229
Log Permeability std. dev. 106.6462| 656.1804| 338.9524| 45.5389| 6.8061
coef. of var. 1.6017 1.0667 2.6713 2.9885| 16.0926

Table 2 summarized statistics (global proportions, mean, standard deviation and coefficient of variation) for facies
and petrophysical properties (porosity and permeability) of Hekla data set
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q(u)

Logarithmic scale

Kerr,

Depth increases

Figure 1 schematic diagram for arithmetic upscaling of facies by major rule and calculating the corresponding
quality variable with geometric averaging (the number of facies is 2 (black and white), K = 2, and the scaling size is
3,V =3)

Typical Facies Model

B84.000]
10.000

Facies_3

Facies_2

! Facies_1

1.000

64,000

Figure 2 typical facies model with three facies (left) along with corresponding model of distance to nearest other
facies in logarithmic scale (right)
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Figure 3 total possible combinations for calculating gin the case of K =3 andV = 4
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Step 4

Figure 4 schematic steps for stepwise conditional transformation for bivariate case (Z;and Z, ); Step 1 is the
normal score transformation of Z;to get Y';, Step 2 is to classify Z,conditional to Y’;, Step 3 is the normal score
transformation Z, classes separately and Step 4 is to lump all of the normal score transformed classes of
Z,together to get Y', and crossplot of stepwise conditional transformed variables (further geostatistical simulation
are done with these two new variables but finally the models should be back transformed to original values)
(Leuangthong, 2003)
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Figure 5 synthetic scatter plot and distributions of quality variable and anisotropic distance to nearest other facies
for a reservoir with three facies of low, intermediate and high quality. Here the quality is considered as
permeability
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Figure 6 Conceptual geological model for Hekla area (Journel, 1998)
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Figure 8 cumulative distribution functions (CDF) for by facies core porosity and horizontal permeability; CDFS show

that facies 2 is the best portion of reservoir while facies 5 is the poorest.
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Figure 11 probability density functions (PDFs)

in vertical direction along with the corresponding fitted
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Figure 12 3D facies model for Hekla; the number of facies is three
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Figure 13 the by-facies quality models (top row); the facies model and the corresponding anisotropic distance
model (middle row) and the merged quality model (bottom row)
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Figure 14 the left hand side plots are different slides on XY, XZ and YZ planes of facies model, the middle plots are
the associated distance to nearest other facies model and the right hand side plots are the corresponding stepwise
conditional simulated quality models
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Figure 15 the scatter plot and distributions of quality variable and anisotropic distance to nearest other facies for

Hekla data set

111-14



