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Probability Estimation with Maximum Entropy Principle

Yupeng Li and Clayton V. Deutsch

The principle of Maximum Entropy is a powerful and versatile tool for inferring a probability distribution

from constraints that do not completely characterize the distribution. The principle of Minimum Relative

Entropy which is a more general form of Maximum Entropy method has all the important attributes of the

Maximum Entropy method with the advantage of more easily integration of the prior probability distribution.

The maximum entropy methods have been successfully explored in many disciplines. While used in discrete

multivariate probability distribution estimation, there are some challenges with the traditional Lagrange mul-

tiplier approach to Maximum Entropy and Minimum Relative Entropy. In this paper, the Iterative Scaling

based on Minimum Relative Entropy is used in discrete multivariate probability estimation which makes the

Minimum Relative Entropy principle approach successfully implementation in discrete multivariate probabil-

ity estimation. The principle of Maximum Entropy and Minimum Relative Entropy are introduced. Then,

the challenges in discrete Multivariate Probability estimation are illustrated with a small discrete probability

estimation example. A solution based on iterative scaling is introduced and explained with two numerical

application examples.

1 Maximum Entropy Principle

The principle of maximum entropy (ME) is based on the premise that when estimating the probability

distribution, the best estimation results will keep the largest remaining uncertainty (the maximum entropy)

consistent with all the known constraints. In that way, no more additional assumptions or biases were

introduced in the estimation [1, 2].

Generally, assuming any desired multivariate probability is p : {pℓ, ℓ = 1, · · · , N}, the objective

function will be satisfied from some constraints:

Maximum: H(p) = −
N∑
ℓ=1

pℓLog(pℓ) (1)

subject to: ∑
pℓ = 1 (2)∑
amℓpℓ = bm;m = 1, 2, · · · ,M (3)

Where bm are any order of marginal for the desired discrete multivariate probability.

Theorem 1 Only under the normal constraints, the uniform distribution will be the maximum entropy

solution.

Proof The well-known solution to the problem of optimizing a function subject to constraints is the method

of Lagrange multipliers[3]. The first step is to form a new entropy function L(pℓ, λ) as defined below:

L = −
∑
ℓ

pℓ log(pℓ) + λ
(∑

ℓ

pℓ − 1
)

(4)
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The second step is equating the derivate of (4) to zero with respect to each variables pℓ, ℓ = 1, · · · , N and

λ. The results will be an equation set:

∂L

∂pℓ
= −1− log(pℓ) + λ = 0 (5)

∂L

∂λ
=

∑
ℓ

(pℓ)− 1 = 0 (6)

From equation (5), it is obtained that pℓ = exp(λ− 1). This is independent of ℓ, Thus, all the probabilities

pℓ should be equal and sum to 1. Then the uniform distribution pℓ = 1/N is the ME estimation.

When the full constraints are enforced to the objective function. Using the method of Lagrange

multipliers, the new objective function L(p, λ, λm) will be defined as:

L(pℓ, λ, λm) = −
∑
ℓ

pℓ log(pℓ) + λ
(
1−

∑
ℓ

pℓ
)
+ λm

(
bm −

∑
ℓ

amℓpℓ
)

(7)

Then equate the derivative of equation (7) to zero with respect to each of the variables pℓ, ℓ =

1, · · · , N and λ, λm;m = 1, · · · ,M that is:

∂L

∂pℓ
= −Logpℓ − 1− λ−

M∑
m=1

λmamℓ = 0 (8)

∂L

∂λ
= 1−

∑
ℓ

pℓ = 0 (9)

∂L

∂λm
= bm −

∑
ℓ

amℓpℓ = 0 (10)

Then from equation (8), it is obtained that

pℓ = exp
(
− λ0 −

M∑
m=1

λmamℓ

)
(λ0 = λ+ 1) (11)

In information theory and statistical mechanics, the preferred form is written as:

pℓ =
1

Λ
exp(−

M∑
m=1

λmamℓ) (12)

Where Λ is called partition function which is a function between λ0 and all the other λm and written as:

Λ = exp(λ0) =
N∑
ℓ=1

πℓexp(−
M∑

m=1

λmamℓ) (13)

The probability law in (11) is also named as the Gibbs distribution. The Lagrange multiplier λ0 is

called the potential equation which has the property that:

∂λ0

λm
= −bm, m = 1, · · · ,M (14)

Theoretically, from equation (14), all the needed λm;m = 1, · · · ,M can be solved from the m equations.

However, solving the m set of coupled implicit nonlinear equation is a difficult task in practice.
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2 Minimum relative entropy principle

In probability and information theory, the relative entropy which is also known as Kullback-Leibler diver-

gence, information divergence, information gain is an asymmetric measure of the difference between two

probability distributions [4, 5, 6, 7]. Consider two sets of discrete probability (p1, · · · , pN ) and (π1, · · · , πN ).

The relative entropy between them which is also a measure of the difference of the information contained in

them is defined as:

J [p ∥ π] =
∑
ℓ

pℓ log
pℓ
πℓ

(15)

It is well known that:

J [p ∥ π] ≥ 0 (16)

J [p ∥ π] = 0 if only if p = π (17)

The Principle of Minimum Relative Entropy(MRE) is that given new facts, a new distribution p

should be chosen which is as hard to discriminate from the original distribution π as possible so that the

new data produce as small an information gain J(p||π) as possible, thus no more bias except satisfying the

constraints are introduced. [8] It is written as:

Minimize: J(p ∥ π) =
∑
ℓ

pℓ log
pℓ
πℓ

(18)

subject to: ∑
pℓ = 1 (19)∑
amℓpℓ = bm;m = 1, 2, · · · ,M (20)

where amℓ is the marginal construction matrix. The constraint bm will be the marginal probability and it

will satisfy
∑M

m=1 bm = 1.

Theorem 2 Maximum Entropy is equivalent to Minimum Relative Entropy principle between P and the

uniform distribution U.

Proof Given the uniform probability distribution U = 1/N , then Minimum KL divergence results will be :

Minimize: J(P ∥ U) =

N∑
ℓ=1

pℓ log(pℓN) (21)

=
n∑

ℓ=1

pℓ log pℓ +N logN

= −H(P ) + (constant)

As shown in Equation (21), the results from minimizing J(p ∥ π) will bring maximum entropy results to

H(p).

Thus, the ME approach is a special case of the MRE. However, the MRE formulation is more general

and offers greater flexibility for the null-hypothesis function π can represent any probability function.
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2.1 Solving MRE by Lagrange multiplier

The same Lagrange multipliers approach is used in solving the solution. The first step is to form a new

entropy function L(pℓ, λ, λm) as defined below:

L(pℓ, λ, λm) = −
N∑
ℓ=1

pℓ log
pℓ
πℓ

+ (λ0 − 1)
( N∑
ℓ=1

pℓ − 1
)
+ λm

( N∑
ℓ=1

amℓpℓ − bm
)

(22)

Then equate the derivative of equation (22) to zero with respect to each desired probabilities pℓ, ℓ =

1, · · · , N and all the Lagrange multipliers, that is:

∂L

∂pℓ
= − log

pℓ
πℓ

− 1− λ0 + 1−
M∑

m=1

λmamℓ = 0 (23)

∂L

∂λ0
=

∑
ℓ

pℓ − 1 = 0 (24)

∂L

∂λm
= bm −

∑
ℓ

amℓpℓ = 0 (25)

From equation (23),(24) and (25), the final estimated probability could be expressed as:

pℓ = πℓexp
(
− λ0 −

M∑
m=1

λmamℓ

)
(26)

Or

pℓ =
1

Λ
exp(−

M∑
m=1

λmamℓ) (27)

Where equation (27) is the expression that used most often in information theory. Same as the ME solution,

the expression Λ is called partition function which is a function of all the Lagrange multipliers as:

Λ = exp(λ0) =
N∑
ℓ=1

πℓexp(−
M∑

m=1

λmamℓ) (28)

Where λ0 is called the potential equation. Same as the ME, from the potential equation, taking the derivative

according to all the other Lagrange multipliers, the result will also be a coupled nonlinear equation set. It

could be solved with some numerical approach for very simple problems.

2.2 Solving MRE using iterative scaling

From previous sections, it is shown that the maximum entropy solution will be a coupled nonlinear equation

set. It could be possible solved with some numerical approach. But until now, no clear and transparent

solution have been given. In this section, one kind of iterative scaling solution to the MRE is adopted[4, 9].

The MRE from iterative scaling is said that: Given the constraints in equation (20), there exists an

unique probability distribution P̂ℓ which satisfies them and is the limit of the iterative sequence {p(δ); δ =

0, 1, 2, · · · } defined by

p̂
(0)
ℓ = πℓ

p̂
(δ+1)
ℓ = p̂

(δ)
ℓ µ

M∏
m=1

[
bm

b̂
(δ)
m

]amℓ

δ = 0, 1, 2, · · · (29)
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where b̂
(δ)
m =

∑
amℓp̂

(δ)
ℓ , and µ is used to do normalization.

The proof of unique and convergence of this iterative process in Equation (29) is given by Kull-

back and Khairat in 1966[7]. This method is named as Iterative Scaling(IS) which is continued studied

extensively in mathematics and statistic researches[10, 11, 12, 13, 14].

More generally, consider R sets of constraints each of them is in the form of (20), Let the rth set

constraint be written as: ∑
ℓ

armℓpℓ = brm, r = 1, 2, · · · , R; m = 1, · · · ,M (30)

where
∑M

m=1 b
r
m = 1. In the multivariate probability estimation, this rth set constraints could be any order

lower marginal probability. Provided that the constraints in (30) are consistent to each other, there exists a

unique positive probability distribution p which satisfies them and is of the form:

pℓ = πℓµ

R∏
r=1

M∏
m=1

(µr
m)a

r
mℓ (31)

which means that p can be obtained as the limit of a “cyclical” iterative scaling process[9, 10]. The starting

probability of the iteration π can take the uniform distribution which was simplest and most natural choice

(Darroch and Ratcliff ,1972)[11]. A more reasonable and practical choice of π is assuming that all variables are

independent. that is the initial estimation will be π =
∏

P (uα). Thus, the estimated multivariate represent

a “generalized” independent distribution subject to the linear constraints(lower-marginal distributions).

Here a simple discrete probability P = {p1, p2, p3, p4, p5} is used to show one iterative scaling process.

Let the linear constraints are

5∑
ℓ=1

amℓpi = bm, m = 1, 2, 3, 4; ℓ = 1, 2, 3, 4, 5 (32)

Given an marginal construction matrix amℓ, the linear constraints in Equation (32) written in traditional

matrix form will be: 
1 1 0 0 1

0 1 1 0 1

1 0 0 1 1

1 1 0 1 0

×


p1
p2
p3
p4
p5

 =


h1

h2

h3

h4

 (33)

Assuming the initial probability distribution is {p(0)1 , p
(0)
2 , p

(0)
3 , p

(0)
4 , p

(0)
5 }, the first iterative scaling process
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will be proceed as:

p
(1)
1 = p

(0)
1 (

h1

h
(0)
1

)1(
h2

h
(0)
2

)0(
h3

h
(0)
3

)0(
h4

h
(0)
4

)1 = p
(0)
1

4∏
r=1

(
hr

h
(0)
r

)ar1

p
(1)
2 = p

(0)
2 (

h1

h
(0)
1

)1(
h2

h
(0)
2

)1(
h3

h
(0)
3

)0(
h4

h
(0)
4

)1 = p
(0)
2

4∏
r=1

(
hr

h
(0)
r

)ar2

p
(1)
3 = p

(0)
3 (

h1

h
(0)
1

)0(
h2

h
(0)
2

)1(
h3

h
(0)
3

)0(
h4

h
(0)
4

)0 = p
(0)
3

4∏
r=1

(
hr

h
(0)
r

)ar3

p
(1)
4 = p

(0)
4 (

h1

h
(0)
1

)0(
h2

h
(0)
2

)0(
h3

h
(0)
3

)1(
h4

h
(0)
4

)1 = p
(0)
4

4∏
r=1

(
hr

h
(0)
r

)ar4

p
(1)
5 = p

(0)
5 (

h1

h
(0)
1

)1(
h2

h
(0)
2

)1(
h3

h
(0)
3

)1(
h4

h
(0)
4

)0 = p
(0)
5

4∏
r=1

(
hr

h
(0)
r

)ar5

so after the first iteration the probability will be:

p
(1)
i = p

(0)
i µ

4∏
r=1

[
hr

h
(0)
r

]ari i = 1, · · · , 5 (34)

where µ is used to normalization to make it a probability. Using the same iterative scaling process the

iterated sequence {p(n);n = 0, 1, 2, · · · } can be obtained, the limit of this sequence would be the solution

satisfying the linear constraints.

3 Numerical example of iterative scaling

The die problem

The die problem serves as an illustration and of different solution efforts from iterative scaling and Lagrange

multiplier. This problem was originally proposed by Jaynes as an example to show the ME principle for

undetermined problem[3]. It will show there is no difference in the final results from using Lagrange multiplier

and iterative scaling approach. However, the procedure of IS is more straightforward than the Lagrange

approach.

Consider a die of six faces is tossed for T (T → +∞) times. One is told that the average number of

spots up was not 3.5 as we might expected from an “honest” die but 4.5. Only given this information, and

nothing else, what probability should one assign to i spots on the next toss?

From maximum entropy approach, the solution could be proceed as following procedures. The

constraints to the entropy equation would be:

6∑
i=1

i · pi = 4.5 (35)

6∑
i=1

pi = 1 (36)

the new objective function with Lagrange multipliers would be:

L = −
6∑

i=1

pi log pi + λ0(
6∑

i=1

pi − 1) + λ1(
6∑

i=1

i · pi − 4.5) (37)
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After doing the classical optimization procedure, the desired probability would be:

pi = exp(λ0 + iλ1) (38)

Λ = exp(λ0) =
6∑

i=1

exp(−iλ1) (39)

Λ = x(1− x)−1(1− x6) where: x = exp(−λ1) (40)

∂Λ

∂λ1
= −4.5 property of partition function (41)

3x7 − 5x6 + 9x− 7 = 0 (42)

After obtaining the desired root for the above equation, the maximum entropy probabilities will be:

{0.05435, 0.07877, 0.11416, 0.16545, 0.23977, 0.34749} (43)

While for iterative scaling process, the marginal construction function would be: a1i = {1, 2, 3, 4, 5, 6}.
According the iterative scaling process, the first estimation to the desired probability would be: p0i :

{1/6, 1/6, 1/6, 1/6, 1/6}. The first time of scaling would be:

p11 = µ p01 (
4.5

3.5
)1

p12 = µ p02 (
4.5

3.5
)2

p13 = µ p03 (
4.5

3.5
)3

p14 = µ p04 (
4.5

3.5
)4

p15 = µ p05 (
4.5

3.5
)5

p16 = µ p06 (
4.5

3.5
)6

After doing normalization, the estimation results from IS approach would be:

{0.08123, 0.10444, 0.13428, 0.17265, 0.22198, 0.28540}

All the ten times iteration results are listed in table 1 comparing the Lagrange result and the IS

result, they are almost exactly the same. But the IS process is more straightforward and transparent.

Expert interpretation problem

It can still obtain the analytical equation in the dice problem; however, in general it is not possible. Suppose

that an expert needs to estimate the rock type proportion for one outcrop. At first situation, he only

knows there are five rock types {mud, sand, limestone, dolomite, anhydrite} in this outcrop and without

further sedimentary environment analysis informed. In this case, without more information in hand, the

most intuitively appealing estimated proportion would be:

p(mud) = p1 = 1/5

p(sand) = p2 = 1/5

p(limestone) = p3 = 1/5

p(dolomite) = p4 = 1/5

p(anhydrite) = p5 = 1/5
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iteration time p1 p2 p3 p4 p5 p6
1 0.08123 0.10444 0.13428 0.17265 0.22198 0.28540

2 0.06503 0.08945 0.12306 0.16928 0.23286 0.32032

3 0.05914 0.08365 0.11832 0.16736 0.23672 0.33482

4 0.05660 0.08108 0.11615 0.16639 0.23835 0.34143

5 0.05543 0.07989 0.11512 0.16591 0.23909 0.34456

6 0.05488 0.07931 0.11463 0.16567 0.23944 0.34606

7 0.05461 0.07904 0.11439 0.16556 0.23961 0.34680

8 0.05448 0.07890 0.11427 0.16550 0.23970 0.34715

9 0.05441 0.07883 0.11421 0.16547 0.23974 0.34733

10 0.05438 0.07880 0.11419 0.16546 0.23976 0.34741

Table 1: Ten times iteration results for the dir problem

Suppose after knowing the sedimentary background, it is known that either mud and sand would

have a 30% proportion to exist. And also, in half the cases, the expert expects mud and limestone would

be exist from the out crop. These two piece of information are incorporated into the estimation as two

constraints:

[
1 1 0 0 0

1 0 1 0 0

]
×


p1
p2
p3
p4
p5

 =

[
1/3

1/2

]
(44)

From the ME approach, the objective function would be:

L =
5∑

ℓ=1

pℓ log pℓ + λ0(
5∑

ℓ=1

pℓ − 1) +
2∑

m=1

λm(
5∑

ℓ=1

amℓpℓ) (45)

Using the classical derivative approach, the final expression for the desired probability would be:

pℓ = exp(λ0 +
2∑

m=1

λmamℓ) (46)

Then the partition function would be written as:

Λ = exp(λ0) =

5∑
ℓ=1

exp(−
2∑

m=1

λmamℓ) (47)

Theoretically, one set of nonlinear equation set can be obtained as:

∂λ0

∂λ1
=

∂ log(
∑5

ℓ=1 exp(−
∑2

m=1 λmamℓ))

∂λ1
= −1/3 (48)

∂λ0

∂λ2
=

∂ log(
∑5

ℓ=1 exp(−
∑2

m=1 λmamℓ))

∂λ2
= −1/2 (49)

Obtaining the solution for them is not easy.

While using IS, the probability estimation process would be more simple. The initial estimation
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iteration time p1 p2 p3 p4 p5
1 0.2033 0.1626 0.2439 0.1951 0.1951

2 0.2034 0.1455 0.2679 0.1916 0.1916

3 0.2036 0.1373 0.2807 0.1892 0.1892

4 0.2039 0.1332 0.2875 0.1877 0.1877

5 0.2042 0.1311 0.2911 0.1868 0.1868

6 0.2044 0.1299 0.2931 0.1863 0.1863

7 0.2045 0.1294 0.2941 0.186 0.186

8 0.2046 0.129 0.2947 0.1859 0.1859

9 0.2046 0.1289 0.295 0.1858 0.1858

10 0.2046 0.1288 0.2951 0.1857 0.1857

Table 2: Ten times iteration results for the expert translator problem

would be {1/5, 1/5, 1/5, 1/5, 1/5}, the first iteration process is:

p11 = µ p01 (
1/3

2/5
)1(

1/2

2/5
)1

p12 = µ p02 (
1/3

2/5
)1(

1/2

2/5
)0

p13 = µ p03 (
1/3

2/5
)0(

1/2

2/5
)1

p14 = µ p04 (
1/3

2/5
)0(

1/2

2/5
)0

p15 = µ p05 (
1/3

2/5
)0(

1/2

2/5
)0

After ten times iteration, the constraints are very closely satisfied as shown in table 2.

4 Conclusion

The principle of Minimum Relative Entropy (MRE) is a more general form of the ME method. MRE

has all the important attributes of the ME method with the advantage of more easy integration of the prior

probability distribution. While used in discrete probability distribution estimation, there are some challenges.

The iterative scaling solution to the MRE principle in discrete multivariate probability estimation is more

straightforward and easy to implement. Using the iterative scaling makes its industrial implementation

possible.
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