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Numerical Implementation of Minimum Relative Entropy

in Discrete Multivariate Probability Estimation

Yupeng Li and Clayton V. Deutsch

Although the Maximum Entropy(ME) principle has been successfully explored and applied in many disciplines,

using it in discrete multivariate probability meets some special challenges. These challenges and its solutions

are addressed in this paper. The minimum relative entropy principle which is more general form of ME

principle is used in discrete multivariate probability estimation. When the constraints are the full set of

second order marginals of the desired probability distribution,it is impossible to accomplish the probability

estimation using the traditional Lagrange multiplier solution approach to MRE. In this paper, a kind of

iterative scaling solution to the minimum relative entropy principle is introduced. Some numerical examples

are used to illustrated of its simplicity comparing with the traditional Lagrange multiplier approach.

1 Introduction

Using the Maximum Entropy(ME) principle in discrete probability estimation, the traditional solution is to

construct an objective function and try to solve it using the the Lagrange multipliers approach[1]. For all

but the most simple case, the Lagrange multipliers {λ1, λ1, · · · , λM} that minimize the objective function

L(pℓ, πℓ, λ) cannot be found analytically. Instead, one must resort to the numerical methods. A variety of

numerical methods can be used to calculate all the λs such as such as the works of Balestrino[2], Mead and

Papanicolau [3] and Woodbury[4]. All of them are based on the traditional optimal techniques such as the

gradient assent, conjugate gradient or Newton-Raphson approaches.

When the constraints for the desired discrete multivariate probability are the lower order marginal

probability, it will be a big challenge using the traditional Lagrange multiplier to get the final solution. None

of all the proposed methods such as conjugate gradient method or other similar process could be safely

extended into multivariate probability distribution from the full sets of lower order marginals probabilities.

The main challenge would be discussed in this paper.

One alternative solution, iterative scaling approach is gave based on the principle of minimum relative

entropy(MRE), a more general ME principle. Iterative scaling based on MRE is straightforward. The theory

and the numerical details are given in this paper. From the numerical examples presented in this paper, it

is shown that the discrete MP are well reproduced.

2 Constraints in Discrete MP Inference

Generally, any lower order marginals probability bm,m = 1, · · · ,M which could be any order moments of

the desired multivariate probability, are a linear combination of the subset of the multivariate probability

{pℓ, ℓ = 1, · · · , N} as: ∑
amℓpℓ = bm; m = 1, · · · ,M (1)

where amℓ are the function related to the m and ℓ which will be set later, bm are the marginal probabilities.

In practice, the multivariate probability is unknown and must be estimated from the different orders

of marginal probabilities. The high order multivariate probability is difficult to obtain directly from the

limited sampled locations. Assuming the lower order marginal probability distributions are given, our goal
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is to construct a multivariate probability distribution to satisfy all the given marginal probabilities. That is

inferring a multivariate probability {pℓ, ℓ = 1, · · · , N} which will satisfy the constraints:∑
pℓ = 1 (2)∑
amℓpℓ = bm;m = 1, 2, · · · ,M (3)

Practically, the univariate marginal and bivariate marginal are always used as they can be reliably inferred

from the data. In the later section of this paper, the bivariate marginal is used as an example to illustrate

the multivariate probability estimation procedure. Note, the methodology can be extended to any order

marginal probability.

3 Traditional Numerical Implementation of MRE and ME

In the long history of implementing ME or MRE in engineering or artificial intelligence, some numerical

solutions have been proposed trying to obtain the Lagrange multipliers from the optimal equation such as

Mead and Papanicolau [3] and Woodbury, [4]. Here is a short review of the approach proposed by Mead and

Papanicolau[3]. In their approach, solving the Lagrange multiplier need to define a new optimal function:

Γ(λ1, λ2, · · · , λm) = log Λ +

M∑
m=1

λmbm (4)

Where Λ is the partition function. The desired set of Lagrange multipliers are the stationary point of the

optimal function Γ, being the solution of the linear equation:

∂Γ

λm
= 0 =⇒

N∑
ℓ=1

amℓpℓ = bm, m = 1, · · · ,M (5)

Denote the vector of Lagrange multiplier as λ, and the gradient of Γ by r, one can write the iteration equation

for Newton’s method as

λn+1 = λn −H−1r (6)

Where the matrix H is the Hessian matrix of the partition function. Each component of r in equation

(6) is given by

rm = bm −
N∑
ℓ=1

amℓp
(n)
ℓ (7)

which is the residual between the input sample mean and the corresponding expected value over the estimated

mean at nth iteration. It is shown above that solving of iteration process of (6) and get all the λs will get

the maximum entropy solution from the constraints.

4 Numerical Implementation of IS Solution

But for discrete multivariate probability in facies modeling, there are some special challenges. The first chal-

lenge comes from the multivariate data event space which are defined by the facies number and conditioning

data number. It is very often that three facies are the minimum facies number that should be defined in

facies modeling. Also, the conditioning data number for the unsampled location could be easily more than

ten during conditioning simulation. As shown in Table 1, the multivariate data events number increases fast
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Table 1: Data event space dimension
Total data locations Two facies Three facies Four facies Five facies

3 8 27 64 125

4 16 81 256 625

5 32 243 1,024 3,125

6 64 729 4,096 15,625

7 128 2,187 16,384 78,125

8 256 6,561 65,536 390,625

9 512 19,683 262,144 1,953,125

10 1,024 59,049 1,048,576 9,765,625



1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1


×



p1
p2
p3
p4
...

p24
p25
p26
p27


=



b1
b2
b3
b4
b5
b6
b7
b8
b9



Figure 1: Example of univariate marginalization from trivariate probability

as the conditioning data locations increase. Thus, indexing and tracing all the multivariate probability for

each of the multivariate data event would be the first challenge.

The solution to the index tracing challenge is ordering all the multivariate data events {ωℓ, ℓ = 1, ·, N}
as a one dimension array[5]. The index ℓ for each data event (u1 = k1, · · · ,un = kn) is calculated from the

outcomes itself as:

ℓ = f(k1, · · · , kn) = 1 +

n∑
α=1

(kα − 1)×Kα−1, kα = 1, · · · ,K (8)

where the outcome kα for each location is coming from an integer set {1, 2, ...,K} which is obtained by

ordering and coding all the categories in the set {e1, · · · , eK} into an integer, but the order of the categories

does not matter. By assigning the unique index to each multivariate event and its probability state, in the

marginalization, all the multivariate probability states will be easily traced by this index.

The second challenge comes from the marginalization operation that is building and saving the

marginalization matrix amℓ efficiently in the iteration process. In a very simple case, assuming one unsampled

location is needed to estimated from two sampled locations and there are three possible categories. In this

case, for univariate marginalization, each univariate marginal would comes from 9 trivariate probabilities.

Taking one of the univariate marginal probability as an example, the probability of data event that facies

one is found at location one p(u1 = 1) can be calculated from the multivariate probability as:

p(u1 = 1) =

3∑
k2=1

3∑
k3=1

p(k1 = 1, k2, k3)

The indices of the multivariate probabilities that contribute to the univariate probability are: 1, 4, 7, 10,

13, 16, 19, 22 and 25 calculated from index function of equation (8). There could be 9 possible univariate

probabilities. The calculation of these univariate probabilities is shown in Figure 1.

The same to bivariate marginalization. In this small example, all the bivariate probabilities calculated

from multivariate probability is shown in Figure 2. As the data event space increases, so does the dimension
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

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1



×



p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12
p13
p14
p15
p16
p17
p18
p19
p20
p21
p22
p23
p24
p25
p26
p27



=



b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19
b20
b21
b22
b23
b24
b25
b26
b27



Figure 2: the example of bivariate marginalization from a trivariate probability

Category number K random number n marginal order m Dimension of amℓ

3 3 2
(
3
2

)
· 32 × 33 = 27× 27

3 5 2
(
5
2

)
· 32 × 35 = 90× 243

3 10 3
(
10
3

)
· 33 × 310 = 3240× 59049

Table 2: The dimension of marginal construction matrix

of the marginalization matrix. Generally, the dimension will be defined from the marginal order m, the total

location number n and the facies number K as:

Km ·
(
n

m

)
× Kn (9)

For example, if there are 20 random variables and 3 categories, the dimension of marginal construction

matrix will be 1710× 3, 484, 784, 401. Some of the marginal construction matrix are as listed in table 2.

Handling such a higher dimension of matrix efficiently is a challenge in numerical implementation of

this method. The naive data structure for a matrix is an array. Each entry amℓ can be accessed by the two

indices m and ℓ. Huge memory is needed to store all the entries to represent the matrix.

Although the dimension of amℓ increases dramatically as the random variable number increases,

there are many zero values in the matrix and non-zero values are always equal to one. Because in the

marginalization, only some of the multivariate probability values will be summed up. Most of the elements

in matrix amℓ will be zero, as it is shown in Figure 1 and Figure 2. The marginalization computation can

take advantage of this sparse matrix character and can be proceeded with a more efficient computation.

There are many ways to represent a sparse matrix [6]. The way used in this research is List of Lists

(LIL). Other expression approaches could be used. By LIL approach, only the non-zero column index are

stored. In this research, all the non-zero column indices are calculated from the multivariate event index

function as in equation(8). The sparse matrix is saved by a one dimensional array (only the nonzero elements

column number) and two parameters: the total row number and the non-zero elements number in each row

of the naive matrix amℓ. Substantial memory requirement reduction is obtained and yields huge savings in

memory when compared to a naive approach.

121–4



Paper 121,CCG Annual Report 12, 2010 ( c⃝2010)

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ul

tiv
ar

ia
te

 p
ro

ba
bi

lit
y

Multivariate Probability index

 True MP
   1 times iteration
 10 times iteration
 20 times iteration
 30 times iteration
 40 times iteration
 50 times iteration

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
iff
er
en

ce

The iterative times

Figure 3: Left:The convergence of the iteration results to the true multivariate probability Right: The

difference of from the estimated results and the requirement constraints

The marginalization computation can be done in a very fast linear operation style with a relative

small storage requirement by taking advantage of the sparse matrix operation. More importantly, the sparse

matrix is constant according to the order of the multivariate probability and only need to build one time

after it is built in the first time. It saves a lot of CPU time when the marginalization is needed in every

iteration.

5 Example Application

In this section, one example comes from estimating a true multivariate probability scanned from one training

image. It will be shown that the multivariate probabilities are perfectly reproduced from the bivariate

marginals.

Given a training image and one data configuration, the multivariate probability concerning the joint

outcome for this group of locations will be scanned from the training image as discussed in the traditional

multiple point geostatistics such as the work of Guardiano and Srivastava [7]. The bivariate probability

bm is calculated from the scanned multivariate probability using equation (1). The estimated multivariate

probability peis obtained from the full set of bivariate probabilities using the iterative scaling approach

as proposed in the paper of this volume. Then the estimated multivariate probability distribution pe is

compared with the original scanned true one pa.

As shown in Figure (3), the multivariate probability sequence calculated from different iteration time

converges to a feasible solution which is very close to the true multivariate probability.

Comparing the difference between the aiming bivariate probability ba and the iterated bivariate

probability be, as shown in Figure (3), the difference between them close to zero after 30 to 40 times

iteration, that is limδ = lim∥ba − be∥ → 0.

6 Discussion and Conclusion

The huge multivariate data event space which is decided from outcomes of each discrete random number

and the number of discrete random variables brings special challenges to the numerical applications of the

Minimum Relative Entropy approach in discrete multivariate probability estimation. Instead of using the
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traditional Lagrange multiplier solution approach to the minimum relative entropy principle, the iterative

scaling approach is used in the multivariate probability estimation. Also, the sparse matrix numerical appli-

cation is successfully implemented in the iterative scaling process where many times of discrete multivariate

probability marginalization is calculated during the iterative process. Those two techniques makes the ex-

plicit multivariate probability estimation possible from its different lower order constraints for spatial discrete

random variables.
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