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Mutual Information and Its Application In Spatial Statistics

Yupeng Li and Clayton V. Deutsch

Mutual information is a bivariate statistics that is widely used in information theory, but little used in

geostatistics. This statistic can be used to summarize the spatial correlation from the bivariate probability

between two locations. It can also be used as a criteria to select the most informative conditioning data when

a limited number of conditioning data can be used.

1 Introduction

In probability theory and information theory, the mutual information of two random variables is a quantity

that measures the mutual dependence of the two variables[1] and it is used in many research areas such as

knowledge discovery and data mining[2]. The mutual information of two discrete random variables Si and

Sj is defined as:

R(Si;Sj) =
∑
si

∑
sj

p(si, sj) log

(
p(si, sj)

p(si)p(sj)

)
(1)

where p(si, sj) is the joint probability of si and sj , p(si) and p(sj) are the univariate marginal probability

of si and sj respectively. The basis of the log function will depend on the subject area. If the log function is

based of 2, the measurement of the mutual information would be a bit. Mutual information measures how

much of our uncertainty will be reduced after knowing one of the two variables.

Calculation example

A small example is used to illustrate its calculation. Table 1 is a simple bivariate probability. The univariate

s1 s2 P (s1, s2)

0 0 0.1

0 1 0.7

1 0 0.15

1 1 0.05

Table 1: One bivariate probability for mutual information calculation example

marginal probability of the table 1 is listed in table 2. The pointwise mutual information calculated(assuming

base e) from this simple bivariate probability is listed in table 3. As the results show, although point wise

mutual information could be negative, the final mutual information will be positive as it is the expectation.

2 Properties of Mutual Information

Mutual information quantifies the dependence between the joint distribution of Si and Sj and what the

joint distribution would be if Si and Sj were independent. For example, if the outcomes at si and sj are

P (s1) P (s2)

0 0.8 0.25

1 0.2 0.75

Table 2: The univariate marginal probability from Table 1
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i(s1, s2)

0 0 0.1× log 0.1
0.8×0.25 = −0.0693

0 1 0.7× log 0.7
0.8×0.75 = 0.1079

1 0 0.15× log 0.15
0.2×0.25 = 0.1648

1 1 0.05× log 0.05
0.2×0.75 = −0.0549∑
= 0.1458

Table 3: Mutual information calculation example

independent, then knowing the outcomes at si does not give any information about the outcomes at location

sj . So their mutual information is zero. At the other extreme, if si and sj are highly correlated, knowing the

outcomes at one location will always inform the outcomes at the other location and that is their correlation

would be 1. In this case, these two locations is actually bring no more information for the random variable.

Thus, the information or uncertainty will be equal to any one of them.

The mutual information is always positive. This point can be proofed from the entropy function

and conditional entropy function of random variable Si, Sj as given by T. M. Cover [1] . Given two random

variable Si, Sj , the mutual information would be:

R(Si;Sj) =
∑
si∈I

∑
sj∈J

P (si, sj) log

(
P (si, sj)

P (si)P (sj)

)
(2)

=
∑
si∈I

∑
sj∈J

P (si, sj) log
P (si|sj)
P (si)

= −
∑
si∈I

∑
sj∈J

P (si, sj) logP (si) +
∑
si∈I

∑
sj∈J

P (si, sj) logP (si|sj)

= −
∑
si∈I

P (si) logP (si)−
(
−

∑
si∈I

∑
sj∈J

P (si, sj) logP (si|sj)
)

= H(Si)−H(Si|Sj)

In above equation (2), the H(Si|Sj) is the conditional entropy which is the expected value of the entropies

of the conditional distribution averaged over the conditional random variables and can be defined as:

H(Si|Sj) =
∑
sj∈J

P (sj)H(Si|Sj = sj) (3)

=
∑
sj

P (sj)(
∑
si

P (si|sj) log p(si|sj)

=
∑
si∈I

∑
sj∈J

P (si, sj) logP (si|sj)

The relation H(Si|Sj) ≤ H(Si) will always be satisfied Thus, the mutual information would always be

positive. The mutual information R(si; sj) will equal to 0 if and only if si and sj are independent random

variables. In independent case, the joint probability distribution will be P (si, sj) = P (si)P (si) and therefore:

log

(
P (si, sj)

P (si)P (sj)

)
= log

(
P (si)P (sj)

P (si)P (sj)

)
= log 1 = 0

Usually the entropy H(S) is regarded as a measure of uncertainty about the outcomes at location

s which could be a discrete random variable. Then H(Si|Sj) is the amount of uncertainty remaining about
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Si after Sj is known. Thus H(Si)−H(Si|Sj) will be the amount of uncertainty in Si which is removed by

knowing the outcomes at location Sj . This corroborates the intuitive meaning of mutual information as the

amount of information (that is, reduction in uncertainty) that knowing either variable provides about the

other.

The lower limit of mutual information is seen to be zero. The upper limit will be obtained when these

two random variable Si, Sj are perfectly correlated with each other. The upper limit would be the entropy

calculated from any one of them. This point can be illustrated from the a bivariate normal distribution.

Entropy of a normal distribution

Define S is a normal distribution, that is S ∼ N(µ, σ2). Its entropy will be calculated as:

H(S) = − 1

σ(
√
2π)

∫ +∞

−∞
exp(−1

2
[
z − µ

σ
])× log

{
1

σ
√
2π

exp(−1

2

[z − µ

σ

]
)

}
dx

= log(σ
√
2π) +

log e√
π

∫ +∞

−∞
exp(−y2)y2dy

= log(σ
√
2eπ) (4)

In above equation (4), the entropy about a normal distribution will only be a function of variance. So, the

entropy which is a measurement of information and uncertainty, have a strong relationship with variance

which is also a measure measurement of uncertainty.

Entropy of conditional probability distribution

Given two variables that are both normally distributed X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2), and assume their

correlation coefficient is ρ. Then the conditional probability distribution of Y given X = x would also be

a normal distribution Yx ∼ N(µ2 +
σ2

σ1
ρ(x − µ1), σ2

2(1 − ρ2)). Then from the normal probability entropy

equation as defined in equation (4), the entropy of a conditional probability would be;

HX(Y ) = log(σ2
2(1− ρ2)

√
2eπ) (5)

As before, the mutual information between two random variable X,Y can be calculated from the entropy

as:

R(X,Y ) = H(Y )−HX(Y ) (6)

Put the normal distribution entropy obtained in equation (4) and equation (5) into the mutual information

calculation, then:

R(X,Y ) = H(Y )−HX(Y ) (7)

= log(σ2

√
2eπ)− log(σ2

2(1− ρ2)
√
2eπ)

= −1

2
log(1− ρ2)

As shown in Equation (7), the mutual information can be interpreted from the correlation coefficient

ρ. The stronger the correlation, the greater is the mutual information between X and Y . So when |ρ| = 1,

then the mutual information would close to infinity. But from the entropy view, for two totally related

variables, knowing the distribution for variable Si, the probability distribution of another variable Sj will

also be known. So, actually, only one variable exists. Now, the mutual information should be the uncertainty

or the information measured by the entropy of itself R(Si, Sj) = H(Si) = −
∑

p(si) log p(si). It is also one

of the basic principles in information theory that a variable contains at least as much information about

itself as any other variable can provide[1] .
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3 Some examples from training images

Under the same second-order stationary assumption as that for the variogram calculation in geostatistics [3],

the calculated mutual information function for any two locations at lag distance h as

R(h) =
∑∑

P (u,u+ h) log

(
P (u,u+ h)

P (u)P (u+ h)

)
(8)

Where P (u,u + h) would be the bivariate probability statistics for a random variable S(u) and it would

be: P (u,u + h) = Pr(S(u) = s(u), S(u + h) = s(u + h)). While P (u) and P (u + h) are the univariate

probability at this two locations.

Two training images are used to calculate the mutual information along different directions. The

first example of the mutual information calculated from one training image is shown in Figure 1. The lag

distance that mutual information reaches the first minimum value shows the continuity of the facies in the

whole map. After that low valley period, the mutual information increasez again.

In this example, the yellowstone data set is used as shown in Figure 2. The calculated mutual

information is shown in Figure 2. As the distance increased, the mutual information value reaches the

minimum value without increasing again.There is no such cyclity as found in Figure 2 as in this second

training image is more stochastic in the long range. While for training image one, in the long range, there

is good cross contact pattern which is reflected from the mutual information diagram.

As it can reflect the spatial dependent of two locations, it could be used as a kind of spatial statistic.

The experimental variograms and the respective mutual information diagram calculated from the training

image one are shown in Figure 3. As shown in the comparison, in the short lag distance, before the indicator

variogram reaching their sill and mutual information reaching the first valley, these two statistics are almost

the same. While in the long range, the mutual information function reflect more information than indicator

variogram. In Figure 3, the mutual information is calculated from the indicator transformed data for

comparison purposes.

4 Conclusion and discussion

The mutual information has integrated the direct and cross indicator variogram information into one statis-

tics. It can be used as a spatial statistics to choosing the conditioning data. In the new proposed Direct

Multivariate Probability Estimation(DMPE) approach for facies modeling, the bivariate probability matrix

P (h) = p(u = sk,u+ h = s′k), sk, s
′
k = 1, · · · ,K

is used instead of using indicator covariance. At each step, the mutual information between any two locations

can be easily calculated from this bivariate statistics. Thus, from the mutual information view point, the

DMPE would integrate all the information form the surrounding conditioning data in a non linear style.

Also, when the number of conditioning data are constrained by the probability space, finding the

most informative conditioning data and integrating them together will be very important. It could be used

a criteria to choose conditioning data when only limited conditioning data can be used.
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Figure 1: The mutual information(Right) calculated along two directions from the training image(Left)
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Figure 2: Training image two
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Figure 3: The comparison of experimental variogram and the mutual information
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