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Facies Modeling with Direct Multivariate Probability Estimation

Yupeng Li and Clayton V. Deutsch

In this paper, a new facies modelling procedure using the direct multivariate probability estimation is pro-

posed. In this facies modeling procedure, the bivariate probability diagram is used as the spatial heterogeneity

characterization tool. The conditional probability for the unsampled location is calculated from directly esti-

mate the multivariate probability with the constraints of the full set of bivariate probability of the conditioning

data set. The mains steps of the facies modeling work flow with the proposed method are presented in this

paper.

1 Introduction

Petroleum reservoir management requires numerical models of reservoir heterogeneity. Most geostatistical

practitioners agree that the major heterogeneity is caused by facies due to different sedimentary environment

or different digenetic process after deposition. The most popular geostatistics techniques can be classified as

the cell-based and object-based approaches. Usually, in cell-based reservoir modelling, the model is defined

by a group of cells or grids defined in two or three dimensions. Let {u1, . . . ,un} be a group of locations

in the model and let E is a set of all the possible categories in the model and is composed as {e1, · · · , eK}
which are mutually exclusive and exhaustive in the sense that only one category can be find for one specific

location uα.

A location that is not perfectly known and needs to be predicted is usually called “unknown”, “un-

sampled” or “unclassified” and is denoted as u0. Usually, there is some information about the outcomes

for this unsampled location such as the global probability of each category to exist in the domain. Also,

some information sources such as the relationsip of the sampled locations {u1, . . . ,un} related to the unsam-

pled locationu0. These spatial related information are characterized by some spatial characterization tools.
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Traditionally, probability theory is used to give a quantitative characterization of the information

coming from the data. For example the information from each sampled location to the unsampled location

is usually defined as a conditional probability as p(u|ui), i = 1, · · · , n. Thus, the problem is given n informa-

tion resource p(u|ui), i = 1, · · · , n, how to infer the conditional probability p(u0|u1, . . . ,un) to express our

uncertainty on unsampled location given the information from the sampled locations. This probability is

the core problem in geostatistics. After obtaining the conditional probability distribution p(u0|u1, . . . ,un),

the outcomes probability at location u0 given the outcomes at location u1, . . . ,un has occurred will be

charactered by this conditional probability.

There are some well established approaches to estimate p(u0|u1, . . . ,un) in geostatistics such as In-

dicator Kriging which is based the indicator variogram and the multipoint geostatistics which is based on

training image. Although those two are used widely to infer the conditional probability for categorical vari-

able, there are some constraints in them. In Indicator Kriging approach, after doing an unlinear transforming

the original spatial random variable to a binary random variable, the Kriging approach is used to combine

the information from sampled locations together. Kriging is a linear approach and may not be appropriate
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for probability estimation. While for the multiple point geostatistics, the required multivariate probability

is obtained through scanning a training image. The strongly stationary assumption of this method brings

some challenges to broad application.

Theoretically, the definition of a conditional probability distribution p(u0|u1, . . . ,un) itself is

P (u0|u1, . . . ,un) =
P (u0,u1, . . . ,un)

P (u1, . . . ,un)
(1)

Where P (u0,u1, . . . ,un) is the (n+1) multivariate probability, P (u1, . . . ,un) is the n
th order of the marginal

probability of the estimated multivariate probability P (u0,u1, . . . ,un). The nth marginal probability can

be calculated as:

P (u1, . . . ,un) =
∑
u0

P (u0,u1, . . . ,un) (2)

Merging Equation (2) and Equation (1) permits the conditional probability to be calculated directly after

knowing the multivariate probability as:

P (u0|u1, . . . ,un) =
P (u0,u1, . . . ,un)

P (u1, . . . ,un)
=

P (u0,u1, . . . ,un)∑
u0

P (u0,u1, . . . ,un)
(3)

Then the best way to estimate the conditional probability in Equation (1) could be to directly estimate

the the (n + 1) multivariate probability. That is exactly the aim of this research. Explicitly estimating

the multivariate probability distribution is proposed in this paper. It is based on the principle of Minimum

Relative Entropy (MRE) which is a general form of the maximum entropy principle. The maximum entropy

principle is a well established and often used approach in information theory[1, 2]. While its application

in geostatistics is limited to the Bayesian Maximum Entropy approach [3, 4]. The details of that point is

discussed in paper 122 of this volume. The rest of this paper is constructed as following sections. First,

the spatial Markov model is introduced in this paper which is the basis of simulation with the bivariate

probability constructed multivariate probability. Finally the simulation procedure with the new proposed

multivariate probability estimation is illustrated with a case study.

2 Spatial Markov Model

In traditional Markov stochastic process, under the stationary assumption, the one- step single-dependence

transition matrix is enough to character the stochastic process. That is to say, the process is character-

ized by the one-step single- dependence transition matrix where the current state is dependent only upon

one preceding state. In practice, one-step single dependence Markov model is often sufficiently and useful

representation for descriptive purposes in a stationary case in one dimensional case[5, 6, 7, 8].

The perfect theory in one dimension and stationary case of Markov model spur many efforts to

extend it to two or three dimensions[9]. In spatial geological environment, the outcome for one location

usually depends on many surrounding locations. More previous states can be produce influence to the

current location especially in two dimension or three dimension. In order to obtain more geological realistic

simulation results, more outcomes from previous locations should be counted in when doing simulation.

In Markov chain theory, the multi-step and multi-dependence matrix could used in two or three

dimension [10]. The multi-step and multiple-dependence is defined as a stochastic process whose dependency

relationships involve more than one preceding state as P (u0|u1, . . . ,un). That is, the outcome for current

location would depend on more than one previous locations (multi-dependence), and also these n dependent

locations could be any steps from the current location, especially in two or three dimensions (multi-step).
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Figure 1: Illustration of a multiple steps and multiple dependence Markov random function field model

It is assumed that one multi-step and multi-dependence Markov chain exist in this space and may

move or jump within the space randomly or along a predefined path. It will obey the same or different

transition probability rules in different directions and having its states at any unknown location entirely

depending on its nearest known neighbours found in different locations. This means that the stochastic

structure will keep the same throughout all the locations of the spatial space[11].

All the surrounding sampled locations could bring information to the current unsampled location

and are also related to each other. That is to say, the posterior probability will be a function between all

the bivariate statistics, written as:

P (u0|u1, . . . ,un) = f (p(ui,uj), i, j = 0, 1, · · · , n) (4)

Comparing the definition of multiple-dependent transition probability and the posterior probability def-

inition, they are exactly the same. The conditional probability estimation in equation (1) can be ob-

tained through direct estimation of the multivariate probability P (u0,u1, . . . ,un) and using the defini-

tion in Equation (3). The multivariate probability can be used to calculate the multiple-dependence from

single-dependence along vertical sequence and do vertical stacking pattern simulation. From the lower order

bivariate probability, any order of higher order multivariate can be obtained the proposed algorithm DMPE.

That is the multiple dependent and multiple-step transition probability matrix can be estimated from all its

surrounding locations.

In reality, constrained by the computing power, one more assumption implemented is that the closer

neighbours would screen the information in further locations. This assumption could also be found in the

traditional sequential simulation technique. Using the same assumption, in Markov multiple-dependence

model, it is believed that the current location will be dependent to the nearby locations in certain area

which will screen the further data effect[12].

3 Cell-Based Facies Modeling

In geostatistics, characterization of uncertainty about a spatially distributed phenomenon on the unsampled

location is done through estimates of conditional probabilities. Using the conditional probability calculation

approach as introduced in Equation (1), the conditional probability map for each category can be obtained

as one example shown in Figure 2.
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Figure 2: One estimation example results based on the DMPE

In Figure 2, at each time, only one unsampled location is considered and the conditional probability

is calculated for this unsampled location, a map of probability of each facies in all the locations are obtained.

This process is called interpolating or “estimation”.

Another technique is called “ conditional simulation”. In this case, the simulated facies using the

Monte-Carlo draw from the estimated conditional probability are plotted as a maps, where a facies category

is presented at every grid cell. One advantage of simulation is that the facies map obtained from simulation

would be used as a constraint for next steps in modeling. More importantly, the simulation can characterize

the joint uncertainty together to reflect the spatial variability. The “conditional” means that the hard data

are reproduced exactly.

The introduced spatial Markov simulation model in Section Two is very similar to the traditional

sequential simulation model used in classical geostatistics[12]. In sequential simulation, each realization is

one drawing from its multivariate probability function. Ths same as the sequential simulation principle, the

spatial Markov simulation model is theoretically valid with no approximation or assumption, but in practice,

as the conditioning data increases, the dimension of multivariate probability space will be very huge. In

implementation, the Markov assumption is adopted to solve the size problem. It is assumed, the nearest

data will screen the far location data’s effect. Then for each unsampled location, only limited surrounding

conditioning data are used.

The cell-based spatial Markov simulation model would proceed as all simulation grid cells are visited

only once along a random path and simulated cell values become conditioning data for cells visited later in

the sequence. Building up the reservoir or ore body model usually will include the following steps:

1. Defining the lithotypes or facies. The facies constituting the reservoir have to be defined from the

available data: core samples, well logs and seismic data. They have to honour the geological informa-

tion. In general, the geologists define more facies than could be reasonably simulated. As considering

the probability space constraints, the facies type should be grouped into no more than five categories.

2. Geological analysis and bivariate probability modeling. From the vertical core analysis, obtain a

pattern and believe this pattern will prevail in certain sedimentary units which may be defined by

sequence stratigraphic surface. Inferring the bivariate probability from vertical direction. Define the

dip and strike direction and the anisotropy ratio along these three directions which is also the geologic

understanding about this modeling domain. Those geological understanding will be integrated into the

bivariate probability scaling in the modeling process. The details on bivariate modeling can be found

in paper 123 of this volume.

124–4



Paper 124, CCG Annual Report 12, 2010 ( c⃝2010)

Figure 3: The main work flow estimation/simulation with DMPE and characters of each step

3. Define the simulation grid. Generally, a regular orthogonal simulation grid is adopted in most geological

algorithm design. In this research, as the bivariate statistics constrained by the sequence stratigraphic

surface, it is expected that the grid of x-y plane is aligned to the interpreted equal time surface. The

reference level for the simulation is a specific geological layer which is used to restore the geometry of

the reservoir at the time of deposition. The level have been deposited horizontally during sedimentation

and should, if possible, correspond to a time line.

4. Doing sequential simulation for each unsampled location. For each unsampled location, the spatial

relationship is characterized by the distance and relative direction along the dip and strike direction.

The bivariate probability will be obtained from the vertical transition profile.

(a) Look for the n conditioning data (original well data or previously simulated cell values) closest to

current unsampled location u0;

(b) Based on the distance between every two locations, retrieve bivariate probability from the exper-

imental bivariate probability diagram;

(c) Using the proposed DMPE algorithm to estimate the multivariate probability;

(d) Using the conditional probability definition to build the local cumulative conditional probability

at u0 as in Equation(1);

(e) Draw a simulated facies value using Monte-Carlo sampling, and assign that value to the grid cell

u0;

(f) Go to the next unsampled location until all the unsampled location are visited.

The main steps of the work flow with DMPE can be illustrated with the work flow in Figure 3.

The spatial Markov simulation model is very similar to the sequential simulation model. One difference

compared to the traditional Indicator simulation is that the facies simulated from DMPE are all done in one

multivariate probability estimation, there is no order relation problems as in the indicator approach. Another

difference is the non-linear character in the multivariate probability estimation process. All the bivariate

probability/transition probability are integrated together based on the Maximum Entropy principle.
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4 Conditional Simulation

Practically, an experimental bivariate probability is computed from the data set using the same practical

constraints as for indicator variogram. The data set could be the training image, well vertical profiles or

from outcrops.

For example, from the training image in Figure 3 of paper 123 in this volume, along the north to

south direction, as the distance between location pair (ui,uj) apart from each other to a further distance,

the bivariate probability between facies 1, 2 and 3 will compose a diagram as shown in Figure 3 in paper 123 .

Traditionally, it is needed to find a function to these experimental bivariate probabilities so that a bivariate

probability is available for any distance vector, which will be difficult to keep it as a positive definition

function. Because the experimental bivariate probability is consistent with each other, it is used directly in

this simulation example. Also because the experimental bivariate probability diagram is a discrete diagram,

the distance between every two locations is rounded to the closest lag distance in the simulation process.

Using the calculated bivariate probability matrix as input, the DMPE simulation can proceed as the

traditional sequential simulation. The covariance model is replaced with the bivariate probability matrices.

Three conditional simulations are shown in Figure 4. Notice the spatial structure from North to South in

both of these two simulations is category 1 has different transition probability to category 2 and 3. This

asymmetric spatial structure is capture by bivariate probability from the training image and reproduce in

the simulation. The used bivariate probability is inferred from the training image.

5 Conclusion

The multivariate probability distribution is estimated directly from the direct and cross bivariate probability.

Theoretically, the multivariate probability estimation is in accordance with the Maximum Entropy principle.

The conditional probability distribution is calculated from the estimated multivariate probability. There is

no simplicity assumption. Theoretically, this conditional probability would reflect the most information from

the conditional probability constraints.

There are some constraints in implementation. The first constraint is the conditioning data number

because of computing the multivariate probability distribution. One of the results is there are some artifacts

in estimation results. As it is can be seen from the estimation results, there are some strips along certain

directions. It can be expected that artifacts should be reduced as more conditioning data number can be

used in the estimation or simulation.

A second constraint is the univariate proportion reproduction. The simulation results will dependent

on the univariate proportion embedded in the bivariate probability diagram. The univariate proportion from

the conditioning data set may not be well reproduced. One of the solution to this problem is using some

post processing. This point would be the next step research point.
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