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Calculation and Display of Sensitivity Coefficients

Yevgeniy V. Zagayevskiy and Clayton V. Deutsch

Sensitivity analysis is an essential part of mathematical modeling that describes the relationship and degree of
dependence between output responses and input parameters of a given model. This paper focuses on the
regression approach to sensitivity analysis and a two-step methodology is implemented. In the first step the degree
of uncertainty is analyzed and in the second step the sensitivity to each input is quantified. Two programs are
written for conducting a sensitivity study. sabor .exe calculates sensitivity coefficients for linear and quadratic
regression. bitornado.exe displays values of sensitivity coefficients graphically through a bivariate tornado
chart. The proposed sensitivity analysis tool is compared to other conventional techniques in two examples 1) a
trivial synthetic example of the “volume of original oil in place” and 2) a case study based on actual field data. The
regression approach is found to be more accurate than conventional tornado chart and easy to implement.

1. Introduction

While working with large datasets consisting of many variables it is important to understand the relationship
between variables. Unrelated variables can be omitted from the modeling process to avoid noise and to reduce
computational requirements. When a variable has a large effect on the output of the model, it should be retained
and modeled carefully. The procedure of defining the relationship between input variables and the resulting
variation in the output of a model is deemed a sensitivity analysis (Saltelli et al., 2008).

Conventionally the covariance or correlation matrices are used to assess the relationship between
variables; however, when there are complex nonlinear relationships between variables such summaries can be
inadequate. Tornado chart is useful graphical method of presenting sensitivity analysis results. The authors suggest
using a linear or quadratic regression proxy model to assess the relationship between variables and establish
sensitivity coefficients. Moreover, the uncertainty in these sensitivity coefficients is also important.

The paper is organized as follows. First the definition of a typical sensitivity analysis is given and
conventional techniques are reviewed. Correlation coefficients are used to characterize the linear relationship
between variables and tornado chart is used to convey the results. The regression approach to sensitivity analysis
is explored and demonstrated with two examples 1) a synthetic ‘volume of original oil in place’ (OOIP) example is
used to explain the methodology, and 2) a case study is used to highlight the benefits of the methodology.

2. Conventional Sensitivity Analysis
A sensitivity study explores how and to what extent variation in input variable effects variation (uncertainty) in
output variable of a model and ranks input variables according to their effect values (Saltelli et al., 2008).

Prior to conducting a sensitivity study the strength of the relationship between variables can be assessed
to identify weak relationships with output variables for the purpose of removing variables from the model. For
instance, secondary variables (such as seismic attributes) that are poorly correlated to primary variables (such as
porosity) are eliminated. Typically correlation coefficients are used to describe relationship between two variables.

CoV(X,Y) Ty
Pxy = =
JVAR(X)-VAR(Y) o0,

and |pr| <1 (1)

where COV(X,Y) or ayxy — covariance between random variables X and Y; VAR(X) and VAR(Y) are variances
of random variables X and Y respectively; ox and o, are standard deviations of random variables X and Y
respectively.

Covariance can be used as an alternative to the correlation and considers the standard deviation of the
variables:

COV(X,Y) = ﬁlw 2)
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where N is the number of available values of single random variable; x; is the i"™ value of random variable
X; X is the average value or mean of random variable X.

If more than two variables are present, the correlation or covariance is calculated for every pair of
variables presented in a matrix.

For sake of the simplicity let’s consider a model with single response Y and several inputs X;, i = 1, ..., n,,
The relationship between values of model output and inputs can be expressed as shown in Equation (3).

v, =X, %%, ), i=1,..,N (3)

The correlation matrix is a useful tool for summarizing the bivariate relationships between many
variables; however, only linear relations are assessed.

The main idea of the proposed tornado chart is to show how a response is sensitive to its input variables.
A tornado chart is generated for each output variable (Figure 1). On the horizontal axis the response is plotted with

the mean and two fixed quantiles and associated deviations Yy + A,y & ¥ —A,y are found with:

high quantile Eva )

V+Ay=f(X,...x oo X
_ _ (4)
y _Aiy:f(xll"'lxi

low quantile —
ALY} n,)

high quantile
i

The tornado chart is a visual tool to represent sensitivity analysis results. A more general form of the
tornado chart using the proposed regression approach is discussed.

low quantile

e

where X ;

are the desired quantiles of the X; input variables.

3. Sensitivity Analysis based on Regression
To determine how the response fluctuates with the input a mathematical model to generate the response must be
assumed. Recall that the model has only one output Y and several inputs X;, i = 1, ..., n,. Note that all inputs and
outputs of the model are random variables. If N possible values of the random variables are known, then their
distributions can be summarized by the mean value, variance, range of variation, etc. The regression approach
requires sets of random variable values that are used to derive the sensitivity coefficients.

Let’s consider two types of mathematical models: linear and quadratic. The linear model is simpler, but
the quadratic model produces more plausible and precise results, since interactions between input variables are
considered in the model. The model expressions are:

n

y=b,+ Zbixi - linear model (5)
i=1
n, n n

y=b,+ Zb,.X,. + ZZCk,XkX, - quadratic model (6)
i=1 k=1 I=k

where )7 is the modeled response; b; is the i" regression coefficient corresponding to i" input variable Xj;

cy is the interaction term between random variables X, and X,.
The coefficients are determined by solving for the minimum squared error (LSE) presented in Equation (7)

N
LSE=>(y,~y,) (7)
j=1

The first derivative is set to O:
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oLSE _,
w n ob,
LSE=) (v, ~b, =D bx) = OLSE ®
= = ot 0,V i=1,..n,
ob,

N n
aLizo 22.[yj_bo_zbi.xij.(_1):0
abo j=1 i=1 9)

OLSE _ov N n

a—bp_ VP 22- y/.—bo—Zbi-xl. -(—Xp):O,Vp,p:L...,n,
j=1 i=1

Then

N N n n
ny :Z(bo-l_zbi'xiJ y=b,+ b-X, —>singleequation
i=1

=N = (10)

N N n n
Dy, :Z{(bo +>.b, -xij-xp},Vp yX,=b,X,+> b XX, —>n equations

i=1

Solving these n, + 1 equations we obtain {by, bs,..., b,} regression coefficients. Consider the equivalent in
matrix form:

1 X X, X, b,

71 )71 )_(1 )_(1 )_(2 )_(1 7n ) bl Wl

X, XX, XX, XX, |x| b, |=| VX, (11)
n yn, )_(1 )_(n, )_(2 )_(n, Yn, bn, y_Xn,
[Alx[b]=[c] (12)
[b]=[A]" x[c] (13)

The same calculations are applied to the quadratic model.

OLSE ~0
ob,
L n 0o ) OLSE
LSE:Z()’; —b, _Zbixi - CuXi X)) = ——=0,Vi (14)
= i—1 PR ob,
OLSE =0,Vk,VI>k
oc,,
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From here with application of linear algebra we obtain the required regression coefficients and
interaction terms. Once the coefficients have been calculated the sensitivity coefficients can be obtained from
(Saltelli et al., 2008):

S, :8_R (15)

i |base case

where R is the response (output); P; is the i parameter (input). Usually the base case is referred to the
mean values of response and parameters. Also the Equation (15) can be rewritten in the differential form using
partial derivatives (Equation (16)). Later it can be transformed into expression (17) where numerical approach is
applied.

dR= ;a—e-de = ;5[ dP (16)
R=R . + ii AP (17)

i=1

The same way of thinking can be applied to the quadratic model. Its expression would be:

R

Rmean + HZ/SIAR + nzl nlekIAPkAH (18)
i=1

k=1 [I=2k

If we compare Equations (5) and (6) to (17) and (18), their uniqueness is clear. Regression coefficients
correspond to the sensitivity coefficients (S; = b, VI, i = 1, ..., n), coefficient b, is exactly the mean value of the
response (Rmean = bg), and interaction terms correspond to Q coefficients. All calculations carried out in the
regression model can be used to evaluate sensitivity coefficients (Saltelli et al., 2008).

Moreover the regression approach allows us to simultaneously generate the required mathematical
model (linear or quadratic) while calculating the sensitivity coefficients as well.

However, sensitivity coefficients can be misleading as they are dependent on the units of the input
parameters. The proposed standardized sensitivity coefficients (SSC) resolve this issue (Saltelli et al., 2008). SSC are
expressed as:

(19)

where o, is the standard deviation of the it parameter; o is the standard deviation of the response.
The same concept can be applied to the interaction terms to generate standardized interaction terms:

o _ O-Pk O-P/
le - le 2 (20)
(o)

R

4. Example 1: Small Synthetic Case

Traditional sensitivity analysis methodologies (the correlation matrix between output and inputs, the tornado
chart, and some statistical parameters) are to examine first, and then the proposed methodology is compared to
these conventional approaches with a synthetic ‘volume of original oil in place’ (OOIP).
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oolp=C, .. -A-T-NTG-¢ . -(1-S,) (21)

matrix

where C,.ic IS the correlation matrix of input parameters; A is the area of interest (layer with
accumulated oil); T is the thickness of the deposit; NTG is the net to gross ratio; ¢, is the net porosity; S, is the
water saturation.

The N = 100 values for each input variable are obtained from Monte Carlo Simulation (MCS) using
predefined parametric distributions of each variable (Table 1). Input correlation between variables is defined in
Equation (22). LU decomposition is used to generate correlated values of input random variables (Deutsch and
Deutsch, 2009). OOIP values are calculated by using Equation (21). The histogram of each variable is presented in
Figure 2.

Table 1 — Model input parameters’ distribution characteristics.

Input parameter Definition Distribution type Units Distribution parameters
A Area Triangular m’ a=2,b=4,c=6
T Thickness Gaussian (Normal) m p=10,0=1
NTG Net to gross ratio | Uniform - a=0.6,b=0.8
Pret Net porosity Triangular-like - a=0.15,b=0.25,¢c=0.35h=1
Sw Water saturation | Triangular - a=0.15,b=0.2,c=0.3
(1.0 0.0 00 00 00] « A
00 10 03 025 04| « T
e =|00 03 1.0 04 -05| « NTG (22)
0.0 025 04 10 06| « ¢net
00 -04 -05 -06 1.0 ]| « S,

mcsooip.exe is used to run MCS, which also computes the output OOIP and correlation matrix
between all generated values. The correlation matrix between the simulated values is shown in Equation (23) and
shows reasonable reproduction.

100 -0.09 0.09 012 -015 |060 | « A

-0.09 100 019 025 -031 037 | « T
c | 009 019 100 045 -042 |057 | « NTG 03)
w1012 025 045 1.00 -065 (077 | « 4,

—-0.15 -031 -042 -0.65 100 |-0.64| « S,

| 060 037 057 077 -0.64 |1.00 | « OOIP

The output correlation matrix Couepye Shows which input parameters are more correlated to the response.
All variables except S,, are in direct relation with OOIP as define in Equation (21). Water saturation S,, and OOIP
have inverse relationship.

For this example, the order of importance in the input variables is @, Sy, A, NTG, and T, determined by
considering the absolute value of the correlation coefficients.

In addition to simple ranking of the input variables, conventionally derived tornado chart from
tornado.exe can be examined (Deutsch et al., 2002). Conventional tornado chart is obtained in a following
manner what is different from the proposed approach. To determine the length of the bar on the tornado chart for
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each input variable their low and high quantiles of variation are chosen to define consequent variation range of
OOIP. Single input variable is varied between the desired low and high quantiles while all other inputs are kept at
their mean values. The calculations are repeated for each input variable. Then response variations are plotted
vertically from the highest variation to the lowest one with input variable name aside caused the variation.
Consider the 10% probability (p;5) and the 90% probability (pg) limits for the synthetic example (Figure 3). OOIP
appears to be the most sensitive to the Area, and least sensitive to the Water saturation. A different order of
importance is obtained with this conventional tornado chart: A, @, T, NTG and S,. Most notably, S, is ranked
second for linear relationship strength with OOIP and, however, it is least influential to the response.

Finally, sensitivity analysis using the regression approach is compared to the results of conventional
methods. The executable sabor.exe computes 1) the regression (or sensitivity) coefficients, 2) their
standardized values for the linear and quadratic models, 3) the interaction terms and 4) their standardized values
for the quadratic model using Equations (7) - (20). The program also computes the values of the response OOIP
obtained from both mathematical models, i.e. regressed values of OOIP. Regressed and original values of the
response are plotted against each other in a scatter plot to assess the accuracy of the model. The Figure 4 shows
scatter plots of both models. The estimation accuracy is assessed through a measure of prediction power, which is
a ratio of standard deviations of regressed values of the response to actual ones in percentage (Equation (24)).

O
Prediction power: regressed response values . 100% (24)

O-actual response values

The regression or sensitivity coefficients and their standardized values of the linear and quadratic models
derived from the executable sabor.exe are tabulated in Table 2. The results are summarized in a bivariate
tornado (Figure 5) generated from bitornado.exe. The quadratic model produces better estimation results for
this example. The standardized interaction terms of the quadratic model are shown in Figure 5 as well. The linear
and quadratic models are similar. So, the rank of input parameters from both models is the same. The rank of
input variables according to the sensitivity coefficients is @, NTG, S,, A, and T. The rank according to the
standardized sensitivity coefficients is A, @, T, NTG, and S,. The ranks are different, because standardized
coefficients comprise the variation of input variables and response beside their relationship strength.

The uniqueness of the ranks of input parameters from conventional and bivariate tornado charts (listed in
accordance with SSCs) is clear.

Table 2 - Sensitivity coefficients and their standardized values from sabor.exe.

Prediction . . OOIP mean
Model Type power Coefficients A T NTG Pnet Sw value, m*
Sensitivity 1.49 0.53 8.25 23.37 -5.54
Linear 96.97% i 5.4940
° | Standardized | o0 553 | 022 | 050 | -0.08
Sensitivity
sensitivity 1.40 0.56 7.74 21.59 -7.02
Quadratic 99.97% i 5.4940
° Standardized | o5 | 550 | 021 | 047 | -0.10
sensitivity

Knowing sensitivity coefficients numerical models can be constructed. For example the linear model of
OOIP has following form (Equation (25)):

OOIP=5.49+1.49 -(A—3.87)+0.53-(T —9.97) +8.25-(NTG — 0.69) +

25
123.37-($, —0.25)5.54-(S, —0.22) 23

127 -6



Paper 127, CCG Annual Report 12, 2010 (© 2010)

Other statistical parameters, such as variance and coefficient of variation, can be used to assess
sensitivity. Ranked model inputs using these statistical parameters are shown in Table 3. All rankings discussed are
summarized in Table 4.

Table 3 - Variance and specific standard deviation values of each random variable.

Parameter/Response A T NTG Pret Sw ooip Rank
Variance 0.6492| 0.7362 | 0.0031 | 0.0021 | 0.0008 | 4.8004 T, A NTG, ¢ret Sw
Mean 3.8710| 9.9749 | 0.6939 | 0.2549 | 0.2185 | 5.4940 -
Coefficient of variation (CV)| 0.2081 | 0.0860 | 0.0805 | 0.1815 | 0.1334 | 0.3988 | A, ¢ne, Su, T, NTG

Table 4 — Possible measure tools as a basis for the sensitivity analysis.

Measure Rank

1 2 3 4 5
Correlation matrix Pnet Sw A NTG T
Sensitivity coefficients from linear model Pret NTG Sw A T
Sensitivity coefficients from quadratic model Pret NTG Sw A T
Variance T A NTG Pret Sw
Tornado chart A Pret T NTG Sw
Standardized sensitivity coefficients from linear model A Pret T NTG Sw
Standardized sensitivity coefficients from quadratic model A Pret T NTG Sw
Coefficient of variation (CV) A Pret Sw T NTG

The ranks obtained using standardized sensitivity coefficients and conventional tornado chart are
identical. Thus, SSCs describe how the response is sensitive to a certain model parameter. Also, coefficient of
variation can be used as a weak measure of output sensitivity on variation of an input. Rank based on variance or
the coefficient of variation is interesting but does not relate to sensitivity directly; however, such a ranking does
capture the uncertainty of individual parameters and is useful.

Sensitivity analysis combines the importance of input variables relative to the response and the variation
ranges of these inputs. It can be seen from combining ranks based on correlation coefficients and variance and
comparing with rank based on standardized sensitivity coefficients or conventional tornado chart. Thus, sensitivity
of the response on a certain input parameter is a function of their relationship strength and variation ranges
(Equation (26)).

Sensitivity = f(relationship strength,input variable & response variationranges) or S° = f(S or ,0,62) (26)

5. Example 2: Real Dataset

The proposed sensitivity analysis using regression approach is applied to a real data set extracted from (Fenik,
2010). The data contains two dynamic response variables, cumulative steam/oil ratio (CSOR) and cumulative oil
production (COP) after 10 years of oil extraction. Seven input static variables are available: connected hydrocarbon
volume (CHV); volume of original oil in place (OOIP); sand permeability (Ks.nq); sand porosity (@ng); shale
permeability (Ksnae); shale porosity (@sae) and; shale fraction (SF). Exact relationships between the responses and
input parameters are not known. The correlation matrix between all the variables is shown in Figure 6. The
regressed values of CSOR and COP from sabor . exe against their actual values are plotted in Figure 7 for linear
and quadratic models. The results show that quadratic models have higher estimation accuracy. But caution should
be promoted to avoid over fitting. Bivariate tornado charts are shown in Figure 8 and Figure 9. It is evident that
CSOR mostly depends on shale fraction and volume of oil in place, and the relationships are direct. Other
parameters are not so important and can be omitted from future modeling. A larger number of input parameters is
required for the COP models. Shale fraction, volume of oil in place, shale and sand permeability, and shale porosity
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are essential factors in the estimation of COP. There is a large uncertainty in the standardized sensitivity
coefficients of shale fraction and volume of oil, likely due to their large variation. Shale porosity, sand porosity and
connected hydrocarbon volume play much a very small role the responses.

6. Conclusion
The proposed method includes an assessment of uncertainty, which makes it attractive compared to a typical
correlation matrix approach. Moreover, the regression approach also simultaneously constructs the linear and
quadratic regression models. The standardized regression coefficients are identical to the standardized sensitivity
coefficients and explain how the output is sensitive to each input parameter of the model. That is entire sensitivity
analysis is based only on evaluation of the sensitivity coefficients and their standardized values, which are the
functions of sensitivity coefficients and variable variations.

Thus, standardized sensitivity coefficients are the quantitative measure of the sensitivity of the output on
its inputs that should be treated as the results of the sensitivity study based on the regression approach.
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Figures

Figure 1 — Schematic tornado chart plot.

Histogram of input Varlable: Area Mistogram of input Varlable: Thickness
. Humber of Data 500 — Humber of Data. 100
maun 107 060 maan 908
w3 dev. .77 s dev. 052
coel.of var 0,19 coel_of var 0.09
0130_| rasieum 550 s 1260
N -nm'-*w Qe = .,....'""“""3%
ower cu quaris
minimum 233 I 1 miraim 763
LLR =
— gom . . r
& s .
il ‘ ‘ [ | B | ‘ ‘ ’ |
vl LU I I e L LU
e EES] 433 ER] 743 LU 063 1083 163 1283
Area, =2 Thickness, m
Histogram of input Variable: Net to Gross Ratio Histogram of input Variable: Net Porosity
" Nurmber of Data 900 p - Hasmbar of Data 100
0100 s, 508 o0 aid, dev, 005
coel,of var 0,08 coel_ol var 010
e 089 s 034
- e S50 82 - e 0 £
w23k
EOO&_ " s EOW_ .
0040 . oma] | r
mm_H"” [ H o ‘H “ ‘ "
oocof 11 L1 || H - onm| I|| || I|J
0604 0654 0,708 0754 0804 0.8 0218 0288 (2 0368
Net 10 gross rato. Nt povaty
Histogram of Input Varisble: Water Saturation Histogram of Response Variable: Volume of Original Oif in Place
0,100 . Humber of Data 00 0120 - Humber of Data. 100
m“n&g m'mébg
w2 ey, D 1 . derv, 21
coet.of var 0.14 coet_of var 039
0,080 - . = maxum 029 maximom 1204
wpper quartie 0. 4 upper qartie § 66
. Baian 051 080, T L8
vwer guartie 019 Qo080 [ lowrer quartie 347
Emﬂm- = minem 016 % mivierem 204
0040 L
o040
il L st LT
ate0 0200 0240 0280 20 40 &0 8 10,0 120
Water sateration Volume of criginal o in place, m3

Figure 2 — Histograms of input random variables and response of small synthetic example ‘OOIP’. Input parameters
are: area (A) — triangular distribution, thickness (T) — normal distribution, net to gross ratio (NTG) — uniform
distribution, net porosity (Fnet) — triangular-like distribution, and water saturation (Sw) — triangular distribution.
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v

Figure 3 — The tornado chart for output OOIP of the simulated Example 1.

Figure 4 — Scatter plot of regressed values of response OOIP from mathematical models (from linear model — on
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Figure 5 — Bivariate tornado chart obtained from the linear mathematical model (top) and quadratic model
(bottom) for response OOIP from Example 1. Here the standardized sensitivity coefficients with two-standard-
deviation confidence interval as a red box are shown on the right side for both charts (yellow color corresponds to
positive value, orange — to negative), the standardized interaction terms of quadratic model are shown on the left
side (green — positive, blue - negative). The input parameters are listed in the descending order according to their
standardized sensitivity coefficients. Some other statistical parameters of random variables are shown on the right
side in table form. The prediction power of a model is in the top-left corner.
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Figure 6 — Correlation matrix between variables for Example 2. Seven static input variables: connected
hydrocarbon volume, volume of original oil in place, sand permeability, sand porosity, shale permeability, shale
porosity, shale fraction, and two dynamical responses: cumulative steam/oil ratio, cumulative oil production.
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Figure 7 — Scatter plot of regressed values of response CSOR from mathematical models (from linear model — on
the top-left, from quadratic model — on the top-right) versus actual response CSOR values and scatter plot of
regressed values of response COP from mathematical models (from linear model — on the bottom-left, from
guadratic model — on the bottom-right) versus actual response COP values.
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Figure 8 — Bivariate tornado chart obtained from the linear mathematical model (top) and quadratic model
(bottom) for response CSOR from Example 2. Here the standardized sensitivity coefficients with two-standard-
deviation confidence interval as a red box are shown on the right side for both charts (yellow color corresponds to
positive value, orange — to negative), the standardized interaction terms of quadratic model are shown on the left
side (green — positive, blue - negative). The input parameters are listed in the descending order according to their
standardized sensitivity coefficients. Some other statistical parameters of random variables are shown on the right
side in table form. The prediction power of a model is in the top-left corner.
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Figure 9 — Bivariate tornado chart obtained from the linear mathematical model (top) and quadratic model
(bottom) for response COP from Example 2. Here the standardized sensitivity coefficients with two-standard-
deviation confidence interval as a red box are shown on the right side for both charts (yellow color corresponds to
positive value, orange — to negative), the standardized interaction terms of quadratic model are shown on the left
side (green — positive, blue - negative). The input parameters are listed in the descending order according to their
standardized sensitivity coefficients. Some other statistical parameters of random variables are shown on the right
side in table form. The prediction power of a model is in the top-left corner.
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