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Recovering Spatial Correlation of Multivariate Block LU Realizations
John G. Manchuk and Clayton V. Deutsch

A block LU methodology to generate realizations of random variables at a block scale, such as a selective mining
unit or panel scale, was developed at CCG; however, the results are strictly local. Results cannot be averaged to a
larger block scale or visualized. Doing so is incorrect because the spatial correlation between blocks or panels is not
preserved. This paper describes a workflow to reorganize realizations so that the correct spatial correlation is
recovered. An advantage of the process is the value for any block and realization does not change in the process;
therefore estimates of recoverable reserves are unchanged. Two tools are developed for this research: a program
to upscale the LMC required to generate the initial block scale realizations and a program that reorganizes the
realizations so that spatial correlation is recovered. Upscaling the variogram is necessary to generate
unconditional realizations with the correct correlation that are then used to control the reorganization step. Once
reorganized, it is possible to visualize realizations and average them to other scales.

1. Introduction

Predicting local recoverable reserves is a critical step in mining geostatistics. An approach to assess local reserves
for a single variable was developed by Ortiz and Deutsch (2007). The program, blusim, was designed to predict
reserves for blocks such as panels without having to store and process multiple realizations. Panels are discretized
into selective mining units (SMU) and the LU decomposition approach to simulation is used to generate
realizations that are averaged and discarded. Often there are several variables involved, for example multiple ore
grades or oxide concentrations and the problem is multivariate. In the same year (Boisvert and Deutsch, 2007;
Boisvert et al, 2008), the approach was enhanced to consider multiple variables using LU decomposition and a
linear model of coregionalization (LMC).

A drawback of this approach is that the reserves are local. It is only possible to map the expected value of
a set of panels, which gives results similar to mapping kriged estimates. It is possible to look at individual
realizations of a single panel independently of all other panels; however, a map of a realization of all panels
together would be meaningless and is not advocated. Creating such a map and drawing any conclusions from it is
poor practice (Boisvert and Deutsch, 2007).

In this work, a method is developed to reorganize the set of individual realizations of all panels so that the
correlation at the panel scale is reproduced. The result is a set of panel scale realizations that can be mapped with
the correct spatial structure. To achieve this, a tool to upscale the variogram is required. Generating panel scale
realizations uses the variogram from conditioning data that may be sample (core, grab, etc) scale or SMU scale.
However, reorganized realizations should reflect the variogram at the panel scale. This paper first goes through a
brief review of blusim and then introduces the methodology and program to upscale a linear model of
coregionalization. Secondly, the reorganization approach is developed. A case study is presented to demonstrate
the usefulness of the reorganization approach.

2. Background
Panel scale realizations generated from blusim consider each panel in a grid of panels independently. Each panel
is discretized into a set of smaller scale blocks (SMU’s for example); however, this discretization is never observed
by the user. For each panel, LU simulation is used to quickly generate a set of realizations at the SMU scale
conditioned to any available data. The SMU scale realizations are averaged to the panel scale and discarded,
resulting in only a mean and variance for each panel, or other summary statistics such as the grade above a cutoff.
For univariate cases, the covariance matrix for LU simulation is as large as the number of conditioning
data (called data from here on) plus the number of SMU scale blocks (called nodes from here on) within a panel.
For multivariate data, this size is multiplied by the number of variables involved; therefore, it can become a rather
large system. A nice quality of the LU simulation approach is the data to data portion of the covariance matrix and
the node to node portion only need to be computed once. Only the data to node portions must be updated for
new panels. Another beneficial quality is that realizations are generated by an upper triangular vector product,
which is a fast operation for the typical number of data available within a panel. This makes it possible to generate
hundreds of realizations for a panel in seconds with a computer.

302-1



Paper 302, CCG Annual Report 12, 2010 (© 2010)

One option in the blusim parameters is to output the panel scale realizations. The resulting file contains
all realizations used to evaluate the statistics of the grid of panels. Unfortunately, the realizations cannot be
mapped as the spatial variation at the panel scale is not honored. This is especially true when sample data are
sparse with a spacing beyond the range of the variogram. However, it is possible to reorganize the output
realizations from blusim to recover the true spatial continuity. This first requires upscaling the LMC used to
generate the realizations to obtain the spatial structure to reproduce.

3. LMC Upscaling

To reorganize panel scale realizations so that the panel scale LMC is reproduced, the point scale or SMU scale LMC
input to blusim must be upscaled. A discussion on variogram scaling laws is found in Frykman and Deutsch
(1999) and in Journel and Huijbregts (1978). Consider IV to be the scale of the panels, then the averaged variogram
can be derived by geostatistical scaling laws. The experimental variogram of core samples is calculated and
modeled and the result is scaled to agree with V. The nugget effect, Cy, range, a, andsill, C;,i = 1, ..., n with n the
number of nested structures, are scaled according to Equations (1), (2), and (3) (Kupfersberger et al, 1998). In
Equation (2), |V| and |v| describe the extent of the volumes and are direction dependent. These results are based
on variables that average arithmetically.

C) =Cy % (1)

a’ =a’"+(\V|-v|) (2)

v —cr17V.Y) 3)
1-7(v,v)

A numerical approach to acquire the variogram for the panel scale is developed to work in conjunction
with an automatic variogram fitting tool called varfit _Imc (Jewbali, 2009). The program is called
gamupscale (very similar to gammabar) and input parameters are specified in Table 1. On line 1, the size of the
block is set equal to the panel size; discretization parameters on line 2 should be set identical to those used in
blusim for consistency; on line 3, the number of directions to upscale the variogram should be set to the three
principle direction of the input LMC that starts on line 10; lines 4 to 6 specify the directions using block offsets
much like gam from GSLIB (Deutsch and Journel, 1998); the resulting upscaled variograms can be standardized by
setting the parameter on line 7 to 1; The measure of dissemination is only possible when one variable is
considered (this is a residual parameter from gammabar); and from lines 10 to the end of the parameter file,
there must be N(N + 1)/2 variograms input where N is the number of variables specified on line 9.

Table 1: Parameters for gamupscale.

Line Parameter

1 10.0 10.0 1.0 -X,Y,Z size of block

2 4 41 -X,Y,Z discretization

3 3 50 -number of direction to upscale, number of lags
4 4.8 0.0 0.0 -direction 1: dx, dy, dz

5 0.0 4.8 0.0 -direction 2: dx, dy, dz

6 0.0 0.0 1.2 -direction 3: dx, dy, dz

7 0 -standardize the variograms

8 0 -calculate measure of dissemination, 1l=yes
9 4 -number of variables (LMC if > 1)

10 1 0.001 11 -nested structured, nugget, head, tail

11 1 0.999 0.0 0.0 0.0 -struct, cc, angl, ang2, ang3

12 200.0 200.0 50.0 -rangehl, rangeh2, rangev

The program evaluates the average covariance and average variogram between panels in the directions
specified for all variograms in the LMC. A nugget effect and sill of the upscaled variogram is predicted using a
separation distance of zero between panels. The nugget effect is approximated using Equation (4), where y(0) is
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the average variogram computed with zero separation and b, is the nugget effect of the input LMC. The sill is
approximated from the average covariance and nugget effect by Equation 5, where C(0) is the average covariance
computed with zero separation. These approximations are done for all direct and cross variograms in the LMC. An
advantage of the approximation of the nugget effect is that no a priori knowledge of the representative scale of
the input LMC is needed. For all other separations greater than zero, the average variogram is calculated using
Equation (6).

by = 7(0)-|b,| (4)
&> =C(0)+b, (5)
7(h)=C(0)-C(h)+7(0) (6)

Output from gamupscale is identical to the output from gamv and gam from GSLIB. One file for each
variable pair is output and contains the average variogram for each direction and each lag specified. These files
are labelled gamu_vars_jj.out withi = 1,...N,j = i,..., N. An additional file labelled varfitpars.out that contains
the estimates of the nugget effects and sills that can be used to constrain varfit_Imc. The upscaled LMC is
obtained by running varfit_Imc using the output variogram files and parameters. An initial run may be
required to assess which variogram structures are appropriate, since a large enough change in scale can lead to a
change in structure. One recommendation is to use a Gaussian variogram for one of the structures as upscaling
does lead to increased continuity at the origin in many cases. The process of upscaling an LMC is demonstrated
later in an example.

4. Reorganizing Realizations

Panel scale realizations from blusim only provide local distributions of uncertainty that can be utilized on a panel
by panel basis. Any form of uncertainty for a subset of panels cannot be evaluated; however, the local
distributions can be used to generate realizations that do possess the correct spatial correlation. These can be
visualized and used to assess more than just local uncertainty. For each panel, the set of realizations represent an
empirical CDF (ECDF). The set of ECDF’s for all panels are used in the following workflow to create a new set of
realizations that have the correct LMC:

1. Generate initial blusim realizations (this includes declustering, normal score transformation and LMC
modeling).

2. For each panel, sort the estimates in ascending order to be used as ECDF’s. These are denoted by
Zr, k =1,..,N, where N is the number of panels.

3. Upscale the LMC to the panel scale by executing gamupscale and varfit_Imc.

4. Generate unconditional correlated realizations using the upscaled LMC and the same panel scale grid
used for the blusim realizations.

5. Convert the unconditional realizations into lookup tables. The is done for each panel by determining the
sorted index, which is done as follows with y representing the set of unconditional realizations for a given
panel:

a. Sortyand retain indexes I so that y(I) is sorted in ascending order.
b. Sort I and retain indexes Jso that y(I(])) =vy.
c. Theset, J, are the lookup indexes.
6. Use the lookup indexes to re-organize the ECDF’s from step 2: z;, = z,(J),k = 1, ..., N.

An advantage of this workflow is the new set of realizations consists of the same estimates as the original
set of realizations; therefore, local volumes and averages are unchanged. It is also straightforward to implement.
For step 4, sgsim can be used to generate a set of unconditional, uncorrelated realizations that are correlated
using a utility called correlate_realizations. A similar utility called correlate already exists; however,
it is intended for a Bayesian updating workflow. Correlate_real izations takes a set of Sgsim realizations
and a correlation matrix as input parameters (Table 2). The Cholesky decomposition of the correlation matrix, R,
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in Equation (7), where L is lower triangular, is used in a matrix multiplication with the realizations in Equation (8),
where Y is the set of realizations. Correlated realizations are output to a single file.

Table 2: Parameters for correlate_realizations.

Line Parameter

1 2 -number of variables to correlate

2 sgsiml.out -file 1

3 1 -column number

4 sgsim2.out -file 2

5 1 —-column number

6 50 50 1 -nx, ny, nz

7 -998.0 999.0 -trimming limits

8 1.0 0.5 -correlation matrix: 11 12

9 1.0 - 22

10 sgsim.out -output file
R=LL (7)
Y'=L-Y (8)

Steps 5 and 6 are built into a utility called reorder_realizations. Parameters are shown in Table
3. The program takes realizations from blusim, builds the ECDF for each panel (Step 2), and samples from it
using the indexes from step 5, which are determined from the unconditional realizations input on line 3. For the
file on line 3, it is always assumed to have the same number of variables as on line 2. An index table that was used
to define the new order is output to the file on line 7 (one for each variable) and the reordered realizations to the
file on line 8. A temporary directory is input on line 9 because there is a substantial amount of disk I/O operations
required. To speed up the process, input files are first converted to direct access files and stored in the specified
directory. If the directory does not exist, it is created. These files can be deleted afterwards.

Table 3: Parameters for reorder_realizations.

Line Parameter
1 blusim.out -file with realizations to reorder
2 212 -number of variables and columns
3 sgsim.out -file with unconditional realizations
4 12 -columns, same number as first file
5 100 100 1 -nx, ny, nz
6 -998.0 -999.0 —-trimming limits
7 order.out -output Ffile for index table
8 blusim_ord.out -output file for reordered realizations
9 -/tempfiles/ -directory for intermediate files
5. Example

A two dimensional data set with four variables (Ni, Fe, MgO, and Co) is used to demonstrate the presented
approach. Figure 1 shows the sample locations shaded by nickel grade. The experimental LMC for input to
blusim was computed for the normal scores of the four variables using gamv and modeled using varfit_Imc
(Figure 2). Next, blusim was executed to generate 50 panel scale realizations. Panels were 20 by 25 meters and
the SMU size was 2.85 by 3.58 meters, which discretizes the panels into 7 by 7 blocks. The whole grid consisted of
50 by 44 panels covering an area of 1000 by 1100 meters. Normally, blusim would be executed using the four
variables in their original form. Then blusim handles the normal score transform, possibly with declustering
weights (not used for this example) and the resulting realizations are in the associated grade units. For purposes
of checking that the realization reordering methodology results in realizations that reproduce the correct LMC, an
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additional run of blusim was done using the normal score variables as well. Resulting realizations are Gaussian
and experimental variograms should coincide with the upscaled LMC (Figure 3).

50 unconditional realizations for each of the variables were generated using sgsim and the upscaled
variograms. The four sets of realizations were correlated using correlate_realizations and the
correlation matrix computed from the sills of the upscaled LMC (Equation (9)). After reorganizing the blusim
realizations using reorder_real izations, reproduction of the panel scale LMC was improved, especially for
the shorter lags with higher covariance (Figure 4). Reordering was applied to the realizations in grade units as well.
Figure 5 shows a realization of each variable.

Cij ..
,j=1..4 (9)

ij — A2 ~12
J Cii 'ij

6. Conclusions

A methodology and set of programs to reorganize multivariate block realizations so that each realization has the
correct spatial structure was presented. The values of each block are not changed in the process; therefore,
statistics for individual blocks are preserved. Realizations were shown to reproduce the variogram after being
reorganized. Having corrected the spatial structure, it is possible to map individual realizations and use them to
assess global uncertainty. Initial, unorganized realizations from blusim can only be used for local uncertainty
assessment.
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Figure 1: Locations of samples.
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Figure 2: LMC of normal scores in the East direction. Dashed line shows experimental and solid lines show the fit model.
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Figure 3: Upscaled LMC. Points output from gamupscale, dashed line is point scale, solid line is panel scale.
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Figure 4: Variogram reproduction before and after realization reordering. Blusim and reordered variograms are the average of

50 realizations.

302-9



Paper 302, CCG Annual Report 12, 2010 (© 2010)

8900

0O
A
o 2 o

10000 M
P

R K

4
L]

o000
o'®o o

OO0
1800

2800

East, m
Figure 5: Reordered realizations and conditioning data.
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