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Mathematical Programming Formulation for Long-Term Mine Planning
in Presence of Grade Uncertainty

Behrang Koushavand, Hooman Askari-Nasab and Clayton V. Deutsch

Uncertainty is inevitable with sparse geological data. The optimality of the solution for an open pit production
scheduling problem is affected dramatically by grade uncertainty. Recent research initiatives have attempted to
consider the effect of grade uncertainty on production schedules. These methods either are aimed to minimize the
risk or to maximize the net present value (NPV) without taking into account grade uncertainty explicitly. Another
major problem in open pit production scheduling is the size of the optimization problem. The mathematical
programming formulation of real size long-term open pit production schedules are beyond the capacity of current
hardware and optimization software. In this paper, a mathematical programming formulism is presented to find a
sequence in which ore and waste blocks should be removed from a predefined open pit outline and their respective
destinations, over the life of mine, so that the net present value of the operation is maximized and the deviations
from the annual target ore production is minimized in the presence of geological and grade uncertainty. An oil sand
deposit at north of Alberta is used to generate an optimum schedule.

1. Introduction

Mine planning is a process to find a feasible block extraction schedule that maximizes net present value (NPV) and
is one of the critical processes in the mining engineering. Also, there are some technical, financial and
environmental constraints that should be considered. Whittle (Whittle, 1989) defined open pit mine planning as
‘Specifying the sequence of blocks extraction from the mine to give the highest NPV, subject to variety of
production, grade blending and pit slope constraints.

The uncertainty of ore grade may cause some shortfalls at the designed production and discrepancies
between planning expectations and actual production (Koushavand and Askari-Nasab, 2009; Osanloo et al., 2008;
Vallee, 2000). Different authors present methodologies to transfer grade uncertainty and show the impact of
uncertainty at mine planning.

Geological characteristics of each point (grade) are assigned using available estimation techniques. Kriging
(Deutsch and Journel, 1998; Goovaerts, 1997) is the most common estimation method used in industry; however,
kriging results do not capture uncertainty and may be smooth leading to systematically biased reserve estimates.
Mine plans that are generated based on one input block model fail to quantify the geological uncertainty and its
impact on the future cash flows and production targets. Geostatistical simulation algorithms are widely used to
quantify and assess this uncertainty. The generated realizations are equally probable and represent plausible
geological outcomes (Deutsch & Journel, 1998; Goovaerts, 1997; Journel & Huijbregts, 1981). Choosing one or
some of these realizations will not be objective to fair uncertainty assessment. Also, generated final pit limit and
production schedule based on one block model would not necessarily be the optimum one. Therefore to get
robust and optimum long-term production planning (LTPP), a sufficient number of realizations should be used
simultaneously.

Godoy and Dimitrakopoulos (Godoy and Dimitrakopoulos, 2003) and Leite and Dimitrakopoulos (Leite and
Dimitrakopoulos, 2007) present a new risk inclusive LTPP approach based on simulated annealing. A multistage
heuristic framework is presented to generate a final schedule, which considers geological uncertainty so as to
minimize the risk of deviations from production targets. A basic input to this framework is a set of equally probable
scenarios of the orebody, generated by the technique of conditional simulation. They report significant
improvement on NPV in presence of uncertainty.

Dimitrakopoulos and Ramazan (Dimitrakopoulos and Ramazan, 2004) proposed a probabilistic method for
long-term mine planning based on linear programming. This method uses probabilities of being above or below a
cut-off to deal with uncertainty. The LP model is used to minimize the deviation from target production. This
method does not directly and explicitly account for grade uncertainty and also does not maximize the NPV.

Leite and Dimitrakopoulos (Leite and Dimitrakopoulos, 2007) present a technique that generates an
optimal schedule for each realization. Afterwards, simulated annealing is used to generate a single schedule based
on all schedules, such that the deviation from target production is minimized. The main drawback of simulated
annealing is that it does not necessarily find the optimum solution. Figure 1 shows the stages of the stochastic
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production schedule framework presented by Leite and Dimitrakopoulos (Leite and Dimitrakopoulos, 2007) . For
each of conditional simulation realizations, an optimum schedule is generated and using simulated annealing
technique, a single schedule is generated based on all schedules such that deviation from target production be
minimized.

Dimitrakopoulos and Ramazan (Dimitrakopoulos and Ramazan, 2008) present a stochastic integer
programming (SIP) model to generate the optimal production schedule using equally probable simulated orebody
models as input, without averaging the related grades. This model has a penalty function that is the cost of
deviation from the target production and is calculated from geological risk discount rate (GDR) that is discounted
unit cost of deviation from a target production. They use linear programming to maximize a function equal to NPV
minus penalty costs. They concluded that the generated production schedule is the optimum solution that can
produce the maximum achievable discounted total value from the project, given the available orebody uncertainty
described through a set of stochastically simulated orebody models. The proposed scheduling approach considers
multiple simulated orebody models without increasing the required number of binary variables and thus
computational complexity. With this method, it is not clear how to define the GDR parameter. For different GDR
values there are different optimal solution. A high GRD value causes blocks with less uncertainty to be extracted.
The authors do not suggest any method to choose the optimum GDR parameter. At the presented model, mixed
integer programming has been used. A variable is defined for each block. Adding constraints increases the

complexity and CPU time to solve the optimization. The short-term production schedule is not taken into account.

It is not dynamic and flexible to new information that is acquired during the mine life.
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Appendix

t
I,n

V
The discounted revenue generated by selling the final product within block n in period t at

realization number | minus the extra discounted cost of mining all the material in block n as ore and processing

t
' e discounted cost of mining all the material as waste in block n in period t at realization
Gin The di ted cost of mini Il th terial te in block n'i iod t at lizati
number .
E Number of element of interests in each block.
T Total number of periods
L Total number of simulation realizations
0| n . . .
' Ore tonnage in block n at realization I.
ge
L Average grade of element e in one portion of block n at realization I.
et
r Processing recovery; the proportion of element e recovered in time period t
et
p Price in present value terms obtainable per unit of product, element e
et
Cs Selling cost in present value terms obtainable per unit of product, element e
Cpe,t
Extra cost in present value terms per unit of production, element e
W,
hn Waste tonnage in block n at realization I.
t
cm Cost in present value terms of mining a tone of waste in period t.
t
a, €{0,1}

Binary integer variable controlling the precedence of extraction of blocks. It is equal to one if
extraction of block n has started by or in period t, otherwise it is zero

Z € [0,1]

period t

t

€|0,1
Yo [ ' ] Continues variable, representing the portion of bock n to be mined in period in period t, fraction
of y characterizes both ore and waste.

t
0 . . S .

Py is the over produced amount of ore tonnage above a desired tonnage, or upper limit, in period t
and realization number I.

Continues variable, representing the portion of bock n to be extracted as ore and processed in

Up't is the under produced amount of ore tonnage bellow a desired tonnage, or upper limit, in period
t and realization number I.

C(t’p is the discounted unit cost of Opt at period t.

C‘t‘p is the discounted unit cost of Up't at period t

Vnt

is the expected discounted revenue over all simulation realizations.

Q.

is the expected discounted cost over all simulation realizations.
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Tables
Table 1 shows the summary of the uncertainty based methods to solve LTPP problem. The major
shortcomings of the current mine planning methods reviewed in this literature are:

e Most of the methods show the effect of uncertainty on the mine plan, but do not suggest a method to
minimize the risk of uncertainty.

o There are some methods to deal with grade uncertainty, these methods either are trying to minimize
the risk or maximizing NPV without using uncertainty explicitly. It is critical to maximize NPV and to
minimize risk in presence of uncertainty explicitly.

e The methods are not suitable for real-size mining problems.

e They are not dynamic and flexible to the new information that is produced overtime.

2. Linear Programming (LP) formulation for mine planning

Mine planning is a process that defines a sequence of extraction of blocks with the objective of net present value
(NPV) maximization. The mine production scheduling can be formulated as an optimization problem. NPV is the
discounted revenue that discounted cost has been deducted from it:

discountedprofit = discounted revenue — discounted costs (2.1)

Askari-Nasab and Awuah-Offei (2009) have presented the objective functions of the LP formulations that
maximizes the net present value of the mining operation. Is it needed to define a clear concept of economic block
value based on ore parcels which could be mined selectively. The profit from mining a block depends on the value
of the block and the costs incurred in mining and processing. The cost of mining a block is a function of its spatial
location, which characterizes how deep the block is located relative to the surface and how far it is relative to its
final dump. The spatial factor can be applied as a mining cost adjustment factor for each block according to its
location to the surface. The discounted profit from block is equal to the discounted revenue generated by selling
the final product contained in block n minus all the discounted costs involved in extracting block, this is presented
at eq.(2.1) The discounted cost can rewrite as eq (2.2) and eq (2.3):

E E

Vi =20, x gy X x(p* —cs™) = o, xcp®! 2.2)
e=1 e=1

g, =(0, +w, )xcm' (2.3)

Therefore the mathematical form of optimal mining schedule is presented at eq (2.4):

T N
Max D" (vixzy —0x V) (2.4)
t=1 n=1
Subject to:
N
D grx0,x2,
g,° <= <g,* Vvt=12..T ,e=12..,E (2.5)
> 0,x1,
n=1
N
<> 0,xz, <P, vt=12,...T (2.6)
n=1
N
m <> (0, +W,)xz,<m, Vt=12..T (2.7)
n=1
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z <y vt=12,...,T ,n=12,..,N (2.8)
t .

a,—> y <0 vt=12,..,T ,n=12,..,N, 1=12..,C(L) (2.9)
i=1

t .

Dy —a, <0 vt=12,...T ,n=12,..,N (2.10)

i=1

al—a*™ <0 vt=12,...,T-1, n=12,..,N (2.11)

Where Eq. (2.5) is grade blending constraints; these inequalities ensure that the head grade of the
elements of interest and contaminants are within the desired range in each period. There are two equations
(upper bound and lower bound) per element per scheduling period in Eq.(2.5). Eq. (2.6) is processing capacity
constraints; these inequalities ensure that the total ore processed in each period is within the acceptable range of
processing plant capacity. There are two equations (upper bound and lower) per period per ore type. Eq. (2.7) is
mining constraints; these inequalities ensure that the total tonnage of material mined (ore, waste, overburden,
and undefined waste) in each period is within the acceptable range of mining equipment capacity in that period.
There are two equations (upper bound and lower bound) per period. Eq. (2.8) represents inequalities that ensure
the amount of ore of any block which is processed in any given period is less than or equal to the amount of rock
extracted in the considered time period.

Egs. (2.9) to (2.11) control the relationship of block extraction precedence by binary integer variables at
block level. This model only requires the set of immediate predecessors’ blocks on top of each block to model the
order of block extraction relationship. This is presented by set C(L) in Eq. (2.9).

3. Case Study
An oil sands deposit in Fort McMurray, Alberta, Canada is used. Location of boreholes and histogram of data is
presented at Figure 2 and Figure 3 respectively.

Directional experimental variograms are calculated and fit. The Azimuths of major and minor directions
are 50 and 140 degrees. Figure 4 shows the experimental and the fitted variogram models in major (Figure 4a),
minor (Figure 4b) and vertical (Figure 4c) directions.

Ordinary kriging is used to estimate the bitumen grade (with no normal score transform) at each block
location. Multiple realizations of the bitumen grade are generated using Sequential Gaussian Simulation (SGS)
(Isaaks and Srivastava, 1989) at a very high resolution three-dimensional grid at the point scale, this method is the
means of constructing uncertainty models of bitumen grades. Figure 5a and 5b illustrate the map of the bitumen
grade for the kriged, the E-type and realization 26 models. It is well-known that kriging is conditionally biased
(Isaaks, 2005) and on the other hand “there is no conditional bias of simulation when the simulation results are
used correctly” (McLennan and Deutsch, 2004). Conditional biasness of kriging can be reduced by tuning
estimation parameter but it can not be eliminated (Isaaks, 2005). Grade-Tonnage curve is the good tool to check
the impact of kriging biasness. Figure 6 shows the grade tonnage curve of simulation realization (dashed lines), krig
(bold solid line) and Etype (bold dashed line). The systematic biasness of kriging was tried to be minimized but still
the there are differences between kriging and simulation results. Also Etype is slightly different than kriging;
Theoretically Etype model is identical with simple kriging result at Gaussian space (Journel and Huijbregts, 1981).

Histogram and variogram reproduction are checked. Figure 7 shows the histogram reproduction and
Figure 8a to Figure 8c show the variogram reproduction at major and minor horizontal, and vertical directions.
Generally Sequential Gaussian simulation would reproduce histogram and variogram of original data if it
implements carefully. In this case reproduction of histogram and variograms are acceptable.

The sizes of the blocks used in mine planning are a function of the selective mining unit (SMU). The high
resolution grid is up-scaled to get the right block scale values. Arithmetic averaging of point scale grades provides
the up-scaled SMU grades

The final pit limit design is carried out based on the industry standard Lerchs and Grossmann algorithm
(Lerchs and Grossmann, 1965) using the Whittle strategic mine planning software (Gemcom Software
International, 1998-2008). The kriged, E-type, and fifty SGS realizations models are imported into the Whittle
software.
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The ultimate pit limit design is carried out based on the Syncrude's costs in CANS/bbl of sweet blend for
the third quarter of 2008 (Jaremko 2009). Price of oil was considered US$45 with an exchange rate of 1.25:1 equal
to CAN $56.25/bbl SSB for the same time period. We assume that every two tonnes of oil sands with an average
grade of 10% mass will produce one barrel of sweet blend, which is approximately 200 kg. We also assume a

density of 2.16 tonne/m? for oil sands, and a density of 2.1 tonne/m?3 for waste material, including clay and sand.

Table 2 summarizes the costs used in the pit limit design. The mining cost of $12.18 is per tonne of oil
sands ore, we assumed a stripping ratio of 1.8:1, and this would lead to a cost of $4.6/tonne of extracted material
(ore and waste).

Table 3 shows the pit design and production scheduling input parameters. Thirty three pitshells are
generated using 49 fixed revenue factors ranging between 0.1 to 2.5, based on the kriged block model. The
number of pitshells is reduced to 14 after applying the minimum mining width of 150 meters for the final pit and
the intermediate pits. Table 4 summarizes the information related to the final pit limit based on kriged block model
at 6% bitumen cut-off grade.

The kriged model is the basis for production scheduling. The aim is to maintain a uniform processing feed
throughout the mine life. Five years of pre-stripping is considered to provide enough operating space and ore
availability. No stockpile is defined and the target production is set to 20 million tonnes of ore per year with a
mining capacity of 35 million tonnes per year. There are 14607 blocks inside the final pit; it is almost imposible to
solve the LP algorithm with this much of blocks. Therefore clustering algorithms has been applied and 500 mining
cuts have been generated. Figure 9 shows the plane view of mining cuts at 280m. LP algorithm is used to maximize
NPV. At this study we don’t consider grade uncertainty and only used kriging to maximize NPV. Figure 10 illustrates
the kriged block model schedule over 21 years of mine-life. Figure 11shows the plan view of block schedule and
their year of extraction. Figure 12 shows the discounted cash flow. The cash back was happened during period 7
for all realizations. Black line is krig model which we optimized NPV using it. This schedule is followed for EType
(blue dashed line) and simulation realizations (dashed red lines). NPV of kriging is 1.17 billion dollars. Table 5
shows the statistical information of krig, Etype and realization schedules.

Figure 13 shows the tonnage of feed to the plant. One should take into account that the shortfall in
production has happened although we have used five years of pre-stripping. The effect of the grade uncertainty on
the production targets would be more severe if the pre-stripping strategy was not adopted.

Figure 14 shows the input average head grade for each period. Kriged model (bold solid line), Etype model
(bold dashed line) and the simulation realizations (dashed lines). LP optimization have tried to extract high grade
zoons at first years to maximize Net present value.

4. Grade uncertainty based MILP formulation

A Stochastic integer Programming (SIP) model for optimizing long term production scheduling in open pit mines is
developed with an objective function that maximizes the total NPV of the project under a managed grade risk
profile. Grade uncertainty causes shortfalls from target productions. Therefore to get optimum solution, NPV must
be maximized and deviation from target production must be minimized simultaneously among all simulation
realizations:

Max. NPV
Min. Deviationfrom target production
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Dimitrakopoulos and Ramazan (Dimitrakopoulos and Ramazan, 2004) defined a geological risk discount
rate (GDR) to allow the management of risk to be distributed between periods. They defined some costs for
deviation from the target tonnage production and a discounted cost is calculated.

A new profit function is defined with two more extra variables per period. Therefore the new profit
function for any block in the model is calculated by Eq.(4.1).

R 330 ) (e o ”
t=1 n=L

The mathematical programming model maximizes the expected profit function represented by Eq. (4.2)
through all simulation realizations to get optimum solution in presence of grade uncertainty:

1 L
Max= > F,
L 1=
l S u - t t t t t t t t
= Max-— > Z{Z(Vnn x 2 =0, x Yy )= (ct, x 0p| +c' x up| )}
= | =1 (n=1
1 C N S t t - t t - t t t t
= Max IZ YLDV )xz =2 (a,) > ynJ—Z(ccpxopI +c' xup|) (4.2)
t=1 (n=1\I=1 1=1 1=1
= Max %i{i(Lant X7\ — LxQIt]n X y;)—i(cép x0p, +C' xupf)}
t=1 Un=1 1=1
T N 1 L
= Max Z{Z(V; xzt —Q!, x y;)—IZ(cép x op} +c' xup; )}
t=1 Un=1 1=1

Both of Vnt and Q,tn come from the Etype mean that is the average of all realization and are

constant values. The constraints of this model are the same as model in Appendix 1.
There will be two constraints per period for each realization defined by Eq.(4.3) and (4.4):

(0, %z, —op} ) <P} vt=12,...T ,1=12...,L (43)

[ 20

(0., %2 ~up})> P’ vt=12,..T ,1=12,.,L (4.4)

>
Il
LN

The model defined by Eq. (4.2) is superior to the model defined by Dimitrakopoulos and Ramazan
(Dimitrakopoulos and Ramazan, 2008), in that, the amount of ore processed and amount of material mined are
controlled by two separate continues variable rather than binary integer variables. This method enables us to have
a high resolution solution for selection of ore and processing. This approach reduces the number of binary integer
variable in the model drastically. Therefore the CPU time will be decreased and the model will be more efficient.

In this model, the number of variables equals the number of blocks multiplied by the number of periods.
Therefore, it would be time consuming process to solve this linear programming. Boland et.al. (Boland et al., 2009)
and Askar-Nasab and Awuah-Offeri (Askari-Nasab and Awuah-Offeri, 2009) tried to solve this problem with
clustering the blocks to reduce the number of variables. Using some grade aggregation methodology and based on
lithological information, similar blocks are summarized to a group and are dealt as one variable which will be
extracted at the same period. Each group of blocks is called a mining cut. Grouping the blocks into mining-cuts is
done without sacrificing the accuracy of the estimated (or simulated) values and to model a more realistic
equipment movement strategy. The mining-cut clustering algorithm developed uses fuzzy logic clustering
(Kaufman and Rousseeuw, 1990). Coordinates of each mining-cut has been represented by the centre of the cut
and its spatial location.

The proposed linear programming was formulated in MATLAB environment (MathWorks Inc., 2007).
TOMLAB/CPLEX (Holmstrom, 1989-2009) was used as the Linear programming Solver. TOMLAB/CPLEX efficiently
integrates the solver package CPLEX (ILOG Inc, 2007) with MATLAB.

305-7



Paper 305, CCG Annual Report 12, 2010 (© 2010)

5. Value of stochastic optimization

The input grade is uncertain. Therefore LTPP is a stochastic programming. A number of realizations are generated
by geostatistical conditional simulations algorithm. These realizations are equal probability. Assume that there are
10 simulation realizations that fully describe the uncertainty of the orebody. Therefore each of realizations has
exactly 10% chance to be the same as actual deposit. Each of realizations is used to generate an optimum solution
to maximize NPV. Assume that realization number 3 is the true realization. Therefore the NPV that is calculated
with this realization is the highest NPV that can be achieved. This NPV obtained from scheduling of perfect
information. For example if realization number 1 is used to generate a schedule, because the blocks value are not
what is expected, the schedule based on this realization will not be an optimum solution. Since it is not known that
which realization is the true one, the average of NPVs that has been calculated from all 10 realizations is the
expected net present value of the project and is called ‘expected solution of perfect information (ESPI)’.

Etype block model is calculated by averaging all realization values and maybe used as an input block
model. To assess the uncertainty, 10 realizations can be used to get different NPVs by using the schedule that has
been calculated by Etype values. The average of these NPVs is called the ‘expected value solution (EVS)’

The more efficient method is to use scholastic optimization algorithms by using all 10 realizations
simultaneously. At this method, all realizations and constrains are used to generate a single schedule that.

Again, 10 different NPVs can be calculated by using this schedule and 10 realizations. The average value of
the 10 NPVs is called the ‘expected stochastic solution (ESS)’.

Dimitrakopoulos and Ramazan (Dimitrakopoulos and Ramazan, 2008) defined the value of stochastic
programming (VSP), that is the differences between the stochastic solutions and the expected value solution:
VSP = ESS — EVS (5.1)

The VSP is a positive quantity if the optimality of the problem depends on the uncertainty of the variables.
VSP represents the cost of ignoring uncertainty in making a decision.

By using Stochastic Integer Programming (SIP), all possible outcomes (simulated orebody models) are
taken into account. If only a single orebody model is used in optimization, the NPV may appear to be the highest
for that specific orebody model. However during the mine operation, the grade and amount of ore for each block
will be deferent than the estimated value. This causes some shortfalls and decreases the actual NPV. The SP
considers these possible variations through the available simulated models, and as a result, quantifies and
manages the risk of not meeting production targets properly.

Note that the VSP can only be 0 for some extreme cases where the optimal solution is not sensitive to the
uncertain variables. This means that regardless of the scenario used as input to the mathematical programming
model, the result would be exactly the same. It is a highly unlikely case to occur in mine production scheduling that
the schedule does not depend on the grades and quality parameters involved. Although there is no general rule for
the magnitude of the VSP, VSP is expected to increase with increasing variance in the variables related to the
optimization.

5. Conclusions

The LP optimization has been applied to the kriged block model and the effect of grade uncertainty is
illustrated by following the same schedule for all 50 realizations. Even an optimum schedule base on one block
model is not optimum for other realizations and grade uncertainty cause over and under production at plant feed.
To get optimum results, all conditional simulation realizations should take into account. A stochastic linear
mathematical programming has been presented to minimize risk of uncertainty. A new profit function is defined.
Any over and under production amount of ore at conditional realizations are penalized. Therefore by maximizing
the new profit function, NOV is maximized and risk of under and over production was reduced. Future work is to
write MATLAB code to implement the new profit function.
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Appendix
Vt

hn The discounted revenue generated by selling the final product within block n in period t at

realization number | minus the extra discounted cost of mining all the material in block n as ore and processing
t

i n

The discounted cost of mining all the material as waste in block n in period t at realization

number .
E Number of element of interests in each block.
T Total number of periods
L Total number of simulation realizations
0
hn Ore tonnage in block n at realization I.
ge
L Average grade of element e in one portion of block n at realization I.
et
r Processing recovery; the proportion of element e recovered in time period t
et
P Price in present value terms obtainable per unit of product, element e
et
cs Selling cost in present value terms obtainable per unit of product, element e
et
cp Extra cost in present value terms per unit of production, element e
W n . N
' Waste tonnage in block n at realization I.
t
cm Cost in present value terms of mining a tone of waste in period t.
t
a, {01 . . . . .
Binary integer variable controlling the precedence of extraction of blocks. It is equal to one if
extraction of block n has started by or in period t, otherwise it is zero
z, €[0,1] . . . . .
Continues variable, representing the portion of bock n to be extracted as ore and processed in
period t
t
y, € [0,1]

Continues variable, representing the portion of bock n to be mined in period in period t, fraction
of y characterizes both ore and waste.

t
0 . . S .

Py is the over produced amount of ore tonnage above a desired tonnage, or upper limit, in period t
and realization number I.

t
u . . S .
Py is the under produced amount of ore tonnage bellow a desired tonnage, or upper limit, in period
t and realization number I.
t

C t
op is the discounted unit cost of op at period t.
t t
C u
up is the discounted unit cost of P at period t
VI

n is the expected discounted revenue over all simulation realizations.

t

L is the expected discounted cost over all simulation realizations.
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Tables
Table 1: summarizes the uncertainty-based algorithms to solve LTPP problems.
Type of model Author Year Solution Advantages Disadvantages
Risk analysis using | Rovenscroft Conditional simulation | Shows the impact of grade uncertainty on LTPP | It can not quantify the risk of a project
deterministic 1992 technique and It does not optimal solution in presence of
algorithm deterministic LTPP grade uncertainty
algorithm
Risk analysis using | Dowd 1994 Conditional simulation | Quantify risk associated in a project It does not give any criteria to accept or reject
dynamic and DP the risk
programming Does not produce optimal solution in the
presence of grade uncertainty
Linear Dimitrakopoulos 2003 Linear goal Generates the schedule that reduces the risk at Will schedule some blocks partially
programming and Ramazan programming early production sages It does not generate maximum NPV in
Consider equipment mobility and block access presence of grade uncertainty
in production planning
Metaheuristic Gody and 2003 Conditional simulation | Integration of ore body uncertainty, waste Implementation is complicated
Dimitrakopoulos and management and economic and mining The optimality of this method cannot be
Simulated annealing consideration to generate optimal mining rates guaranteed
Produces a single optimum production planning | It does not consider equipment access
in presence of uncertainty Grade uncertainty is not incorporated
explicitly in the production planning process
Mixed integer Ramazan and 2004 Mixed integer Maximizes NPV explicitly with the It cannot implement on large deposit
Programming Dimitrakopoulos Programming consideration of equipment mobility and block | Grade uncertainty has not been used directly
access
Metaheuristic Laite and 2007 Conditional simulation | Integration of ore body uncertainty, waste It cannot implement on large deposit
Dimitrakopoulos and management and economic and mining The optimality of this method cannot be
Simulated annealing consideration to generate optimal mining rates guaranteed
Produces a single optimum production planning | Simulated annealing technique is very
in presence of uncertainty complex and need lots of parameters.
The method minimize deviation from target It is very slow and time consuming
production that courses by grade uncertainty
Stochastic Mix Dimitrakopoulos 2008 Linear stochastic Maximizes NPV It cannot implement on large deposit.
integer and Ramazan programming Grade uncertainty has been used directly GDR parameter is not very clear.
programming Produces a single optimum production planning | Short-term production schedule issue and
for a geological risk discount rate (GDR) value. | blast data set are not taken into account
Risk analysis Koushavand, 2009 Conditional simulation | Shows the impact of grade uncertainty on LTPP | It can not quantify the risk of a project
Askari and technique It does not optimal solution in presence of
Deutsch grade uncertainty
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Table 2: Summary of costs used in pit limit design.

Description Value Description Value
Mining Costs (CAN S/ bbl SSB) 24.35 | Mining Costs (CAN $/tonne) 12.18
Upgrading Costs (CAN $/ bbl SSB) 10.05 | Upgrading Costs (CAN S/tonne) 5.025
Others (CAN $/bbl SSB) 1.5 Others (CAN $/tonne) 0.75
Total Costs (CAN S/ bbl SSB) 35.9 Total Costs (CAN S/tonne) 17.28
Table 3: Final pit limit and mine planning input parameters.
Description Value Description Value
Cutoff grade (%mass bitumen) 6 Processing limit (M tonne/year) 20
Mining recovery fraction 0.88 Mining limit (M tonne/year) 35
Processing recovery factor 0.95 Overall slope (degrees) 20
Minimum mining width (m) 150 Pre-stripping (years) 5

Table 4: Material in the final pit using the kriged block model.

Description Value
Total tonnage of material (M tonne) 653.61
Tonnage of ore (M tonne) 280.5
Tonnage of material below cutoff (M tonne) 37.4
Tonnage of waste (M tonne) 335.71
Bitumen recovered (M tonne) 27.52
Stripping ratio (waste:ore) 1.33

Table 5: Statistical comparison of schaduels created with kriging, Etype and realization

Tonnage of ore Strip Ratio Input Bitumen Average Produced Bitumen NPV
M tonne M tonne %m M tonne B Dollors
krig | 2824 | 131 | 2911 | 103 | 277 | 1169
Mex laga3 | 143 | 2903 | 105 | 276 | 1168
A lema | 139 | 285 | 103 | 274 | 1126
Q@ oz | 137 | 281 | 103 | 267 | 1095
QO lema | 1350472423 [ 280 | 102 | 2661092591 | 1.074
Max laeso | 1296943 | 274 | 100 | 26052034 | 1028
Etype 281.4 28.435457 28.4 10.1 27.013685 1.103
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Figure 2: location map of boreholes.
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Figure 6: Grade tonnage curve of simulation realizations, kriged, and Etype block models
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Figure 7: Histogram reproduction of simulation realizations (dashed lines) and histogram of original data (bold line)

305-16



Paper 305, CCG Annual Report 12, 2010 (© 2010)

a 1.20_ Variogram Reproduction/ Major Horizontal b 1.20_ Variogram Reproduction/ Minor Horizontal
1.00_] 1.00_]
080_] 080_]
’Y 060_] 060_]
0.40_] 040_]
0.20_] 020_]
O 7 — —
0. 400. 800, 1200. 0. 400, 800, 1200.
Distance R R R Distance
c 1.20_ Variogram Reproduction/ Vertical
1.00_]
080_]
Y 060_]
040_]
020_]
000 T T T T T T T |
00 100 200 300 400 500
Distance
Figure 8: Variogram reproduction of simulation realizations (red dash lines) and reference variogram model (black
line).

x 10
2.5451-
2.54-
2.535-
000
ooooggooo 00000
1000000000%0 00088%) 137000
00G0H600000 [elele} 0000
2531 ooogg%oooo 0000 000%8
00000000 0000 000 0000 o
0000000000
$pESS282000
T e
108° ooooagﬁ o
0000 00
2.5251 elete]
150 - S
1 1 1 1 1 1 1

1.475 1.48 1.485 1.49 1.495 15 1.505

Figure 9: plan view of 280m with defined mining cuts.

305-17



Paper 305, CCG Annual Report 12, 2010 (© 2010)

Millions Tonnes

40

35

30

25

20

15

Schedule with LP

B Tonnage of wasterock

[0 Tonnage input to processing

10
5_
O_ T T T T T T T HI 1
Period
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Figure 10: Production schedule based on the kriged block model.
Flan View - 280m
T T T T T T T
T
| I I I
| |
@ | |
ﬂ:_
g
58
<5
£%
- |
|
5 Er';"y" b £ LCHAAG .'}.n. N
III’IP | 153 I I R II__{ I
IFFRFEE A | 07l P 57 0 5 5 P 1 O I
|0 [ £ 1 § | T 0 ) T 0 ) o 9 | [ I |
4 1 L L L 1 L L
o w0 Fral 1 40 =0 $-1 o
Easting (-indes)
cach cell 50m

Figure 11: Plan view of 280m, schedule of extraction of blocks

305-18



Paper 305, CCG Annual Report 12, 2010 (© 2010)

Cumulative NPV ($)
w
c
o
= 51200 -
=
$700
—--- Simulations
——Krige
—Etype
$200
B TR 1 TR . S LSO - S 1 . - . I R s S
-$300 - Period (year)
-$800 -

Figure 12: Cumulative discounted cash flow for 50 realizations (dashed lines) and kriged model (solid line).
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Figure 13: Head grade of simulation realizations, kriged, and E-type models.
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Figure 14: Plant feed (realizations dash lines), kriged model (solid line) and E-type (blue dash line).
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