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DENSIM: A New Program for Simulating Discrete Fracture Networks

Eric B. Niven and Clayton V. Deutsch

A new program called DFNS IM has been created for the simulation of Discrete Fracture Networks (DFNs). DFNS IM
works by simulating a pool of more fractures than are required and finding a subset of fractures that best respects
the target fracture spacing, orientation and intensity. Fractures in the DFN are classified into two subsets: activated
or deactivated. The DFN consists of activated fractures. The program starts with an initial DFN and iterates by
randomly activating and deactivating fractures. An objective function is used to measure the effectiveness of the
iterations and is based on the perpendicular distance to the nearest fracture, the nearest fracture inter-angle and
the DFN fracture intensity. The objective function is minimized by accepting activations and deactivations that
reduce the objective function. This paper reviews the DFNSIM algorithm in detail. The data search strategy and
the method for calculating perpendicular distance are reviewed. The modeling parameters from the parameter file
are also discussed.

1. Introduction

Although there are several computer codes available for simulation of DFNs (Hartley 1998, Golder Associates
2010), these programs do not attempt to match input distributions of fracture spacing and the angle between the
fractures.

This paper introduces a new program called DFNSIM, which can be used to simulate a DFN using an
iterative algorithm that allows the resulting DFN to better match distributions of fracture spacing and nearest
fracture inter-angle. The nearest fracture inter-angle is the angle between the poles of two fracture planes, which
are the closer to each other than any other fractures. The concept of nearest fracture inter-angle is described in
more detail in Niven and Deutsch (2010a).

This paper is part of a series of four articles in this report that pertain to fracture modeling. This paper
presents a new computer program to simulate DFNs using the methodology described in (2010a). Niven and
Deutsch (2010c) discuss and present evidence that some natural fracture networks cannot be accurately modeled
using traditionally created DFNs. Finally, Niven and Deutsch (2010b) present an example of the program and
methodology applied to a fracture modeling problem from Northern Alberta.

2. The DFNSIM Algorithm

The first step in the DFNSIM algorithm is to create a pool of fractures. However, more fractures are created for
the pool than are required. A fracture intensity multiplication factor is used to describe the ratio of the total
amount of fractures required in the pool to the amount of fractures required to satisfy the desired fracture
intensity. Thus, if the intended fracture intensity is 10 and the fracture multiplication factor is 2, 20 fractures will
be created and assigned to the pool of fractures. The pool of fractures is created using random fracture locations
and randomly choosing fracture orientations from an input distribution (see Niven and Deutsch (2010a) for more
details on the creation of the pool of fractures).

Next, fractures are selected at random and assigned to the activated group of fractures until the number
of activated fractures equals the desired fracture intensity (10 in this case). Those fractures that are not activated
are termed deactivated. Figure 1 illustrates the concept of the activated and deactivated fractures along with the
pool of fractures. There are 20 fractures in the pool. 10 fractures are activated and 10 are deactivated.

At this point, the activated fractures represent the initial DFN, which is a starting point DFN that is iterated upon
later. When the required number of iterations has been completed, the fractures in the activated group represent
the final DFN. After the final DFN is generated the deactivated fractures are thrown away.

Search Strategy

After the initial DFN is created, the search strategy is set-up. From the location of each fracture centroid, a search
is required to identify the nearest fractures in order to calculate fracture spacing and similarity of orientation. The
search is designed to run once at the beginning of the program. Fractures are located by the coordinates of their
centroids. The search strategy is as follows:
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The Superblock search from SGSIM is set-up to find the fracture centroids.

After the Superblock search is set up, a fracture is visited.

At that fracture location, the Superblock search identifies the nearest nclose fracture centroids.

The Euclidean distance between centroids is a poor measure for fracture spacing and is only used to

initially identify close fractures. The perpendicular distance from the visited fracture to the nearest

fractures is calculated. This is demonstrated in Figure 2. The program calculates the average
perpendicular distance to the nclose number of fractures identified by the Superblock search.

5. A certain number of the nclose nearest perpendicular fractures and their perpendicular distances are
stored in memory for later calculations. The parameter keepn, specifies the number of closest
perpendicular fractures and distances stored for each fracture visited.

6. This is repeated for each fracture in the pool of fractures.

PwnNR

In the “Data Search Parameters” section of the parameter file (discussed later), search parameters can be set to
improve the speed of the search for large amounts of fractures.

Finding the nearest fractures by perpendicular distance

The super block search identifies and sorts, by Euclidean distance between centroids, all fracture centroids that fall
within the specified superblock search radius. However, in order to assess fracture spacing DFNSIM uses the
average perpendicular distance to the nearest fracture. Figure 2 illustrates this. Note that the two perpendicular
distances between two fractures, dy; and dy,, are usually not equal. Thus, DFNSIM uses an average of the two
perpendicular distances, d, ... as a measure of fracture spacing. Paper 102 (Niven and Deutsch 2010a) discusses
the calculation of the nearest fracture. After the perpendicular distances are calculated the histogram of
perpendicular distance to the nearest fracture is built.

Calculation of Nearest Fracture Inter-Angle
After the initial search, the pool of fractures is processed to calculate the fracture inter-angle histogram:

1. Afracture is visited.

2. The fracture with the smallest perpendicular distance to the current fracture is identified from the stored
records.

3. The angle between the two fracture poles is calculated and termed the nearest fracture inter-angle and is
stored in memory.

4. Each fracture is visited and the nearest fracture inter-angle for each is stored.

5. Then the histogram of nearest fracture inter-angle is constructed.

The angle between the two fracture poles (the inter-angle) is calculated as follows:

a-b
einter—angle = arccos W (1)
At this point, the histograms of the nearest fracture inter-angle and perpendicular distance to the nearest fracture
have been constructed, so the objective function can be calculated for the initial DFN.

The objective function is presented and discussed in paper 102 (Niven and Deutsch 2010a). After the
objective function is calculated for the initial DFN, DFNSIM iterates, by changing the activation of each fracture
one-at-a-time.

1. A fracture is selected randomly and visited. There are two random path options, which are discussed
later in this article.

2. The activation state of the current fracture is switched from its current state. Note that changing the
activation state changes the fracture intensity to be one greater or less than it was previously.

3. Activating or deactivating a fracture also changes which fractures are closest. DFNSIM sorts through the
list of fractures and updates the nearest fractures as a result of the activation change.
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4. Histograms of perpendicular distance to the nearest fracture and nearest fracture inter-angle are rebuilt
with the recently updated nearest fracture information.

5. The objective function is calculated with the new histograms and the new fracture intensity as a result of
the activation change.

6. If the objective function decreases as a result of the activation change, the activation change is accepted.

7. Go to 3, until all fractures have been visited in the random path or the desired number of fractures are
visited.

8. Visiting each fracture once may not be enough to achieve reasonable results. Line 50 in the parameter
file specifies the number of iteration loops (discussed below) so that each fracture may be visited a
number of times.

The final DFN is written out in two formats, one of which is in the .fab format, which can be imported into
the popular fracture modeling software FRACMAN. The histograms for the final DFN are also written out.

3. The Parameter File

Figure 3 shows an example of the DFNSIM parameter file. The parameters are organized into logical blocks. The
first section specifies the grid-domain using standard GSLIB conventions and the random number seed. The next
section specifies data search parameters.

11 | ***Data Search Parameters***

12 | 1 1 1 -x,y and z block discretization

13 |0 -max per octant (0-> not used)

14 | 2000 2000 2000 -maximum search radii

15 | 0.0 0.0 0.0 -angles for search ellipsoid

16 | -1 -number of nearest data to perp. search, or <0 for all
17 | 3000000 -Band width for perpendicular fracture search

18 | 3000000 -Perpendicular distance to search

Lines 12-15 are superblock search parameters that are also specified in other GSLIB programs that use the
superblock search. See Deutsch and Journel (1998) for more information on the superblock search.

Lines 16-18 specify search parameters related to the perpendicular distance calculation as shown in
Figure 4. The superblock search identifies nclose data points (in this case, 5 fracture centroids are identified in the
figure) based on the Euclidean distance from the current fracture centroid to the other centroids. However, the
perpendicular distance from the fracture being searched to the other fractures needs to be calculated. The
parameters above allow the user calculate the perpendicular distances for a subset of the nclose fracture centroids
identified by the superblock search. These parameters help to speed up the program by limiting the number of
perpendicular distance calculations. In addition, situations where the Euclidean distance is much larger than the
perpendicular distance are avoided (such as when two fractures are nearly in line with each other but are
separated by significant distance in the direction of the fracture’s azimuth). Line 16, specifies the parameter keepn,
which tells the program how many of the nearest data to calculate the perpendicular distance for. Line 17 specifies
a band width for search in the plane of the fracture such that only centroids found within the bandwidth are
subject to the perpendicular distance calculation. Line 18, specifies the distance to search for data in the direction
parallel to the normal vector of the fracture for the perpendicular distance calculation.

20 | ***0utput Fracture Files***

21 | fracdata.out -Output GSLIB Fracture Data

22 | fracdata.fab -Output FracMan Fracture Data

23 | fracdata_optimized.out -Optimized output GSLIB Fracture Data
24 | fracdata_optimized.fab -Optimized output FracMan Fracture Data
25|11 -fracture set names / numbers

Lines 21 to 25 in the parameter file specify the output files. The activated fractures are output for the
initial DFN and the final DFN in two formats, one of which can be imported into the popular commercial fracture
modeling software, FracMan. The other output files are in GeoEAS format using ASCII characters.
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27 | ***Input Fracture Distributions***
28 | spacingdist.out -Input Actual Fracture Spacing Distribution
29 | angledist.out -Input Actual Inter-Fracture Angle Distribution

Lines 28 and 29 specify the two input histogram distributions that must be input into DFNSIM. The first is
the target distribution of the perpendicular distance to the nearest fracture. The second is the target distribution
for the nearest fracture inter-angle.

31 | ***Joint Set Parameters***

32 |0 -Load initial DFN from file? (1=yes, 0=no)

33 | mapdata.out -File with Initial DFN

34 | intensityl.out -Fracture Intensity Input File

35|11 -intensity real. to use, max # of realizations in file
36 | 0 -use locally varying joint orientation (l=yes,0=no)

37 | orientationl.out -1f "Yes", specify locally varying joint orientation file
38 | 146.53 11.80 -Mean pole trend and pole trend st. dev.

39 |0 0.001 -Mean pole plunge and pole plunge st. dev.

40 | 65 25 2 -Fracture Length Mean, St. Dev. and minimum value

41 | 2 0.002 0.002 -Fracture Height Mean, St. Dev. and minimum value

42 | 0.5 0.1 0.01 -Mean Fracture Aperture, St. Dev. and minimum value

43 | 2 -random z location for fractures? (1=yes,2=n0)

44 | 2 -Fracture Intensity Multiplication Factor

The joint set parameters section specifies the parameters for building the pool of fractures. Lines 32 and
33 can be used to specify an initial DFN if one already exists, instead of generating one automatically. Line 34
refers to the fracture intensity file. If there is more than one realization of intensity in the file, the correct
realization and the maximum number of realizations are specified on the next line.

The user can specify locally varying fracture orientation on line 36 and 37. If there is no locally varying
fracture orientation, lines 38 through 42 specify input normal distributions for fracture orientation and size
parameters such as pole dip direction, pole dip, length, height and aperture, respectively. Note that fracture
length, height and aperture require three values. The mean and standard deviation define the normal distribution
from which those variables are sampled from and a minimum possible value truncates the distribution on the
lower end if the user wishes to avoid extremely small fractures or apertures.

Line 43 specifies whether or not the fractures should have a random z (vertical) location within the grid
blocks. If the user specifies ‘2’ for that variable, the z-direction, the fractures will be located in the middle of the
blocks in the z-direction (elevation). This feature is handy for two dimensional problems. Line 44 specifies the
fracture intensity multiplication factor. This is the ratio between the total number of fractures created for the pool
of fractures and the number of activated fractures.

46 | ***QOptimization Variables***

47 | 3 -Optimize by intensity and: l=spacing, 2=angle, 3=all three
48 | 0.000035 -objective function parameter: Intensity constant

49 | 850 -Number of iterations per loop

50 | 4 -Number of iteration loops

51 | 2 -Random Path Option:l=random,2=random without replacement

The next section of parameters (see directly above) generally relate to the optimization and iteration process of
DFNSIM. The objective function is made up of three components which relate to: 1) the perpendicular distance to
the nearest fracture, 2) the nearest fracture inter-angle and 3) the fracture intensity. DFNS IM always includes the
intensity portion of the objective function, but is capable of ignoring either spacing or inter-angle as necessary.
One example where inter-angle might not be important is if the desired fractures have a very narrow distribution
of orientation.

Line 48 specifies an intensity constant for the objective function (see Niven and Deutsch (2010a)). If the
intensity constant is too large proposed fracture activations/deactivations will always be rejected since the
fracture intensity portion of the objective function always starts at zero (since the initial DFN intensity equals the
target intensity). A properly set intensity constant allows enough activations or deactivations to be accepted while
keeping the final fracture intensity close to the target intensity. In the map example from Niven and Deutsch
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(2010b), the target fracture intensity is 425 and the chosen intensity constant allows the fracture intensity to
increase or decrease by approximately 4 or 5. It may take some trial and error to find a suitable intensity constant.

Lines 49 and 50 specify the number of iterations per loop and the number of loops. A good idea would be
to set the number of iterations per loop to be equal to the total number of the fractures in the pool so that each
fracture can be activated/deactivated once. However, one loop may not be enough to reach a good solution, so
the user can specify as many loops as needed. Line 51 specifies the random path option. The random path can be
completely random, which means that a portion of fractures (per loop) will not be visited and some will be visited
more than once. If random path option 2’ is specified, the random path locations are specified, in advance,
without replacement so that every fracture is visited exactly once per loop, but in a random order. If more than
one loop is specified, a new random path is specified for each loop. The 2" random path option is preferred, since
it ensures that every fracture is visited in fewer iterations.

53 | ***Qutput Files***

54 | 1 -output objective function progress? (l=yes, 0=no)
55 | iterations.out -File for iteration objective function progress
56 | results.out -File for spacing and inter-angle results

Finally, the last section of the parameter file specifies the two output files: 1) with the objective function progress
for each iteration, and 2) the initial and final distributions of perpendicular distance to the nearest fracture and
nearest fracture inter-angle.

An example application of DFNSIM can be found in Niven and Deutsch (2010b).

4. Convergence and Time Trials

Figure 5 shows the convergence results from the fracture map example in paper 206 (Niven and Deutsch 2010b).
The objective function decreases rapidly during the first 900 iterations, which roughly corresponds to the first full
iteration loop. Beyond the first iteration loop, objective function improvement is much slower. This finding echoes
results from other applications of the program to real examples. Although DFNSIM is a new program and has
undergone limited testing to this point, the author has never found an example where more than five iteration
loops were needed to achieve stable convergence.

The map example from paper 206 took 12.5 seconds to run with four iteration loops. However, the run
time could have been decreased further by adjusting the search parameters to limit the number of distance
calculations.

By increasing the amount of super blocks used in the search, very large fracture networks can be
simulated in a reasonable amount of time. Table 1 shows the results of a time trial for the data search alone. As
the number of fractures increases, the number of grid blocks is also increasing such that the number of grid blocks
stays the same. For each trial there are 20 fractures per grid block. In each case, the number of super blocks is one
quarter the number of grid blocks (one half in the x and y directions). As long as the number of fractures in each
grid block is kept constant, the search time increases linearly with increasing amounts of fractures (Figure 6).
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Table 1: Search time trial results

# of Fractures in Grid blocks in x Super blocksinx  Total number of # of fractures per  Search time

Model and y directions and y directions grid blocks grid block (min)
2,000 10 5 100 20 0.02
50,000 50 25 2,500 20 0.13
200,000 100 50 10,000 20 0.53
800,000 200 100 40,000 20 2.15
1,800,000 300 150 90,000 20 4,78
5,000,000 500 250 250,000 20 13.83

5. Conclusions
DFNSIM, a new program for simulating discrete fracture networks, is introduced. DFNSIM works by simulating a
pool of more fractures than are required. The program iterates to find a subset of the pool of fractures that better
matches the desired fracture spacing and nearest fracture inter-angle.

An objective function minimization is used to measure the quality of fit between the distributions of
target fracture spacing, nearest fracture inter-angle and fracture intensity and distributions from the DFN created
by the program.

References

Deutsch, C.V. and Journel, A.G. 1998. GSLIB: Geostatistical software library and user's guide. Oxford University
Press, .

Golder Associates. 2010. FracMan7: Interactive discrete feature, data analysis, geometric modeling and
exploration simulation. Golder Associates, .

Hartley, L.J. 1998. NAPSAC (release 4.1) technical summary document. AEA Technology, Oxon, UK.

Niven, E.B. and Deutsch, C.V. 2010a. A new approach to DFN simulation. Paper 102, Report 12, Centre for
Computational Geostatistics, University of Alberta, Edmonton, Alberta.

Niven, E.B. and Deutsch, C.V. 2010b. An example application of DFNSIM in modeling surface lineaments. Paper
206, Report 12, Centre for Computational Geostatistics, University of Alberta, Edmonton, Alberta.

Niven, E.B. and Deutsch, C.V. 2010c. On the randomness of natural fractures. Paper 207, Report 12, Centre for
Computational Geostatistics, University of Alberta, Edmonton, Alberta.

402-6



Paper 402, CCG Annual Report 12, 2010 (© 2010)

Figures

Pool of all /

fractures \\ / \ \ I l \ / / /
Deactivated /

fractures \ | / //

Activated /
fractures \ \ / /
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fractures. Thus, there are 20 fractures in the pool. The activated fractures represent the DFN under construction. The
deactivated fractures are thrown away when the desired number of iterations is complete.
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Figure 2: The procedure for calculating the perpendicular distance to the nearest fracture.
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Parameters for DFNSIM

START OF MAIN PARAMETERS:

1 503 1006 -nX,Xmn,xsiz
1 525 1050 -ny,ymn,ysiz
1 0.05 0.1 -nz,zmn,zsiz
6911 -random number seed

***Data Search Parameters***

1 1 1 -X,y and z block discretization

0 -max per octant (0-> not used)

2000 2000 2000 -maximum search radii

0.0 0.0 0.0 -angles for search ellipsoid

-1 -number of nearest data to perp. search, or <0 for all
3000000 -Band width for perpendicular fracture search

3000000 -Perpendicular distance to search

***Qutput Fracture Files***

fracdata.out -Output GSLIB Fracture Data
fracdata.fab -Output FracMan Fracture Data
fracdata_optimized.out -Optimized output GSLIB Fracture Data
fracdata_optimized.fab -Optimized output FracMan Fracture Data
1 -fracture set names / numbers

***|nput Fracture Distributions***
spacingdist.out -Input Actual Fracture Spacing Distribution
angledist.out -Input Actual Inter-Fracture Angle Distribution

***Joint Set Parameters***

0 -Load initial DFN from file? (l=yes, 0=no)

mapdata.out -File with Initial DFN

intensityl.out -Joint Intensity Input File

11 -intensity real. to use, max # of realizations in file
0 -use locally varying joint orientation (1l=yes,0=no)
orientationl.out -1f "Yes", specify locally varying joint orientation file
146.53 11.80 -Mean pole dip direction and st. dev

0 0.001 -Mean pole dip and st. dev

65 25 2 -Fracture Length Mean, St. Dev and minimum

2 0.002 0.002 -Fracture Height Mean, St. Dev and minimum

0.5 0.1 0.01 -Mean Fracture Aperture, St. Dev and minimum

2 -random z location for fractures? (l=yes,2=no)

2 -Fracture Intensity Multiplication Factor

***Optimization Variables***
-Optimize by intensity and: l=spacing, 2=angle, 3=all three

0.000035 -objective function parameter: Intensity constant

850 -Number of iterations per loop

4 -Number of iteration loops

2 -Random Path Option:l=random,2=random without replacement

***Qutput Files***

1 -output objective function progress? (l=yes, 0=no)
iterations.out -File for iteration objective function progress
results.out -File for spacing and inter-angle results

Figure 3: DFNSIM parameter file.
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This is the fracture centroid
currently being searched from

Figure 4: The relationship between the superblock search and the perpendicular search. The program currently at location 1
and is searching for other fractures nearby. The superblock search identifies all five fracture centroids. However, the
perpendicular distance is only calculated for the first four centroids due to the choice of band width and perpendicular distance
to search. Note that fracture 3 is the closest to fracture 1 using Euclidean distance, but when perpendicular distance is used
fracture 2 is closer to 1 than 3 is.
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Figure 5: Convergence results from fracture map example from paper 206.
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Figure 6: Search time trial results for increasing numbers of fractures.
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