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Programs for Data Spacing, Uncertainty, and Classification
Brandon J. Wilde and Clayton V. Deutsch

Data spacing and data density can be calculated different ways. Some methods for calculating these
values as well as a tool for doing so are presented. These methods are based on the number of samples
within some representative volume. The resulting data spacing/density values can be used to classify
resources/reserves based on geometric criteria. A tool for this is discussed. Determining uncertainty
measures at different data spacings is also useful. A program for performing these calculations as well as
a program for plotting the results is presented.

1 Introduction

A combination of geometric and probabilistic criteria has been suggested as a reasonable basis for
resources and reserves classification (Deutsch et al.,2006). An approach where geometric criteria are
backed up by probabilistic criteria is advised. Tools for calculating these values are useful as classification
is required for public disclosure. The first tool, dataspacing, can be used for calculating local
geometric measures of data spacing and data density. Different ways of determining spacing and density
are discussed. The second tool, classi Ty, performs classification based on one variable and specified
thresholds. The third tool, aduds, performs the methodology described in paper 108 herein and is used
to calculate a number of uncertainty measures for a spatial variable for different data spacings. The final
tool presented is used to present the results from the previously mentioned program. A plot of
uncertainty vs. data spacing is produced.

2 Program for Determining Data Spacing: dataspacing

Dataspacing is a program for calculating data spacing on a regular grid in two or three dimensions
with irregularly spaced data. This program reads in a data file and determines local data spacing values on
a regular grid using the methods described below. It also determines local data density. These values are
written out to a grid file.

2.1 Data Spacing

Data spacing is the distance between adjacent data for a representative area. A densely sampled area has
a small spacing relative to an area that is sparsely sampled. Data spacing at a location, s(u), is determined
by considering the number of nearby samples, n,(u), within some volume, V(u). If V(u) is two-
dimensional, the square root of V(u) divided by n,(u) gives data spacing as shown in Equation 1. When
drillholes are vertical, the calculation of data spacing in three dimensions reduces to a two dimensional
problem and Equation 1 can be used. When the drillholes are not all vertical, as shown in Figure 1 left,
the data spacing calculation must consider a three-dimensional volume. The along-hole spacing, c, is
included in the calculation thus defining the equivalent square drillhole spacing.

To calculate data spacing at a location, either V(u) or ny,(u) are normally fixed. If ny(u) is fixed i.e.
n,(u)=n,,YueA, the volume V(u) required to encompass the n, data is calculated and spacing is
determined as defined previously. If V(u) is fixed i.e. V(u)=V,Yue A, the number of observations n,(u)
that fall within V is determined and spacing is determined as defined previously. The choice of n, or V
affects the results: too small of a volume or too few samples leads to noisy results; too large of a volume
or too many samples leads to over smoothing. The units of spacing depend on the units of V. For
example, if Vis 1 mile x 1 mile (1 section) spacing has units of miles.
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2.2 Data Density

Data density is the number of data observations per unit volume, commonly reported as number of data
per section or hectare. Data density at a location, d(u), is determined by considering the number of
nearby samples, n,(u), within some volume, V(u). Dividing the number of samples by their volume gives
data density (Equation 3). If the data are arranged such that many observations fall within a small
volume, data density is high. If a large volume contains few observations, data density is low.

d(u) = "’/ ((:)) 3

Data density at a location, d(u), is determined in the same manner as data spacing by fixing either V or ny
and calculating the other parameter. The units of density are expressed as a quantity per volume such as
wells per section. The units of density can be easily converted. There are ten thousand square meters in
a hectare and 2,589,988.11 square meters in a section. To convert density simply multiply by the
appropriate constant. For example, if density is given as 1 well per section, this can be converted to wells
per section by multiplying by 2,589,988.11 divided by 10,000 to give 259 wells per hectare. When the
data coordinates are in units of meters, density will have units of samples per square meter. This should
be converted to more meaningful units.

2.3 Vand nyCalculations

Both data spacing and data density are calculated from V and n,. One of these values is fixed allowing the
other to be calculated from the nearby data. The program provides for V to be either circular or square,
depending on the preference of the user. A square window works best when the data are regularly
spaced while a round window works well for irregularly spaced data. Artifacts can occur otherwise.

If Vis constant, ny is location dependent. The size of V is specified by a in two dimensions (Figure
2) and by a and h in three dimensions (Figure 3). This ‘moving window’ volume is translated over the
domain with an origin at u, counting the number of data, n,(u), that fall within it to arrive at data spacing
and data density at each location.

If nyis constant, V is location dependent. In two dimensions, V(u) is calculated by finding a(u)
such that exactly n, data fall within V(u). a(u) is twice the average distance to the ny and n, +1 samples as
shown in Equation 4 where r; is the distance to the i sample from u. This is illustrated in Figure 4 for ny
=4. V(u) for a square volume in two dimensions is calculated as shown in Equation 5 and for a circle
volume in Equation 6.

a(u)=r, +r, , 4
V(u)=a’(u) 5
V()= ﬂa;(u) 6

In three dimensions, V(u) is also calculated by finding a(u), but considering only those data that fall within
ih/z from u in the vertical direction. The volume is determined by applying Equation 5 or 6 as

appropriate and multiplying by h. Samples are found — not drillholes.

3 Program for Classification: classify

Geometric criteria have been proposed as a basis for classifying resources and reserves (Deutsch et al.,
2006). This program performs this classification. Any criteria could be used for classification; this is a
generic program which reads in a gridded file and n classification thresholds t;,i=1,...,n. The values in

the gridded file are then assigned a classification value C j=1,..,n+1. No effort is made to interpret

these classifications i.e. measured, indicated or inferred. This step is left to the practitioner and is
dependent on the type of deposit under study and the associated degree of spatial heterogeneity.

This process is illustrated in Figure 5. n classification thresholds are applied to the random
variable Z. The first classification, cy, is applied to the values of Z less than t;. The second classification, c,,

403-2



Paper 403, CCG Annual Report 12,2010 (© 2010)

is applied to values of Z greater than or equal to t; and less than t,. This continues up to the n" threshold
where any values of Z greater than or equal to t,; and less than t, are classified as n and any values of Z
greater than or equal to t, are classified as n+1.

4 Program for Determining Uncertainty at Various Data Spacings: aduds

A methodology using SGS to evaluate the relationship between uncertainty and data spacing has been
proposed (see paper 108 herein). This program simulates realizations of the truth, samples the
realizations at specified spacings, generates new realizations conditional to the samples, and calculates
local measures of uncertainty. It then writes out the local uncertainty measures for each data spacing
allowing the distribution of uncertainty for a given spacing to be compared to the distributions for other
spacings.

The parameters are similar to those for the sgsim program. Two files are output: one contains
the expected local uncertainty for each data spacing while the other has the local uncertainty value for all
locations. A point-scale grid is specified as well as a block size and the data spacings of interest. The block
size and data spacings must be multiples of the point-scale grid spacing. The number of truth realizations,
L, as well as the number of conditional realizations for each truth realization, K, is specified (see paper 108
for details). The methodology considers a heteroscedastic sampling error which requires the specification
of the desired sampling error to consider. Two parameters relating to the local uncertainty must be
specified. The first is a threshold which is necessary to consider misclassification errors. The other is a
measure of +/- uncertainty as a percentage. For example, if this parameter is set at 15%, the program
calculates the probability for the simulated block values to be within +15% at each location. Finally, a
random number seed and variogram model are specified.

nx
nxb=————

bxsize/ pxsize ;
nyb = L

bysize/pysize

The output file with the local uncertainty measures contains nxb*nyb*L local measures where L is the
number of truth realizations and nxb and nyb are the number of blocks in the x and y directions as defined
in Equation 7 where nx is the number of point-scale estimates, bxsize is the size of the block, and pxsize is
the point-scale estimate spacing in the x-direction. The same applies to the y-direction. For example, if
there are 100 point-scale estimates spaced every 1m in the x-direction and the block size is 5m, there are
20 blocks in the x-direction.

5 Program for Plotting Uncertainty Distributions for Different Data Spacings: undistplt

The aduds program previously discussed outputs local uncertainty values for different data spacings. It
is useful to visualize the distributions of uncertainty for different spacings on the same plot, particularly
when the analysis has been performed for various input parameters (e.g. different variogram models).
This permits the observation of the relationship between uncertainty and data spacing as well as showing
the influence of variations in the input parameters. An example of the output from this program is shown
in Figure 6. The uncertainty measure is standard deviation. The black distributions represent one set of
input parameters while the red distributions represent another.

The parameters follow typical GSLIB format (Deutsch and Journel, 1998). The number of data
spacings as well as the number of distributions per data spacing are required as input to the program.
After specifying the plot limits (setting the max < min will determine these automatically), two parameters
controlling the size and position of the line histograms are specified. The first parameter controls the
width of the line histogram (w in Figure 7) while the other controls the offset (o in Figure 7). These are
useful for modifying the plot when different numbers of distributions are plotted and when the line
histogram is omitted, which is the next parameter in the file.
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6 Conclusions

Data spacing and data density can be used as criteria for classifying resource/reserves. Calculating these
geometric measures is straightforward, a tool for doing so was presented. A choice can be made to
classify resources/reserves based on data spacing or data density thresholds. A program for applying the
classification based on thresholds was presented. It can be useful to validate the choice of threshold by
evaluating uncertainty at various data spacings. A program for evaluating uncertainty at different data
spacings was reviewed. It produces distributions of uncertainty for each data spacing. A plotting program
for comparing the distributions is useful and was presented herein.
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Figures

Figure 1: lllustration of a 3-D volume containing n samples with along-hole spacing of ¢ (from Deutsch et
al., 2006).
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Figure 2: The size of a fixed volume, V, is specified by a in two dimensions. Note that the central location
(u) is scanned over the entire domain.

403-4



au

Paper 403, CCG Annual Report 12,2010 (© 2010)

P d
Au

"—

Figure 3: The size of a fixed volume, V, is specified by a and h in three dimensions.
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Figure 4: Example of determining a(u) for n,=4.

Figure 5: lllustration of classifications, c;, relative to classification thresholds, t;.
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Figure 6: Example of plot output by undistplt.
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Figure 7: lllustration of the width, w, and offset, o, parameters.
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