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Programs for MDE Modeling and Conditional Distribution Calculation
Sahyun Hong and Clayton V. Deutsch

Improved numerical reservoir models are constructed when all available diverse data sources are accounted for to
the maximum extent possible. Integrating diverse data is not a simple problem because data show different
precision and relevance to the primary variables being modeled, nonlinear relations and different types. Previous
approaches rely on a strong Gaussian assumption or the combination of the source-specific probabilities that are
individually calibrated from each data source. Gaussian techniques may be inappropriate when applying to data
that show strong non-Gaussian characteristics. Probability combination approaches are vulnerable in theory and
may require ad-hoc weight calibration. This work develops a multivariate analysis technique for data integration
and implements the proposed method in a standalone GSLib type program. The method models the multivariate
distribution without any distribution assumption. Issues such as nonlinearity, redundancy and data types are
implicitly accounted for during the joint pdf modeling. The modeled multivariate distribution may violate the
marginal constraints that the distribution should conform to. A sequential iteration algorithm was proposed to
impose the constraints on the multivariate distribution. The robustness of the iterative algorithm is addressed. The
developed methodology is applied to examples using the program. Parameter files used for the examples are
specified in details. The application results show that the proposed method and program effectively integrate
various secondary data.

1. Introduction

Building numerical reservoir models is an intermediate but essential step for reservoir management. Numerical
models are used to plan new wells, calculate overall hydrocarbon reserves, predict the reservoir performance in a
flow simulator, and analyze the uncertainty in reservoir performance forecasts. Thus, constructing geological
model is an important step in reservoir management. Accurate reservoir modeling, however, is difficult to achieve
given few data; the key reservoir properties such as facies, porosities, permeabilities and hydrocarbon saturations
are typically sampled at very few well locations. These reservoir properties are heterogeneous and the distribution
is never known exactly. Moreover, these properties are highly coupled with complex geological structures. For
these reasons, all available diverse data should be integrated to the maximum extent possible for reservoir
modeling.

The uncertainty in the reservoir model would generally decrease with additional data sources.
Fortunately, various data are commonly available in petroleum applications; drilled well is the primary data source
and seismic data or inverted seismic attributes are typical examples of supplementary data source in reservoir
modeling. Geologic map data is also an important data. Data from wells are referred to the primary data and
seismic data, geology map or other noncritical reservoir properties such as reservoir thickness and volume of shale
are referred to the secondary data. The characteristics of the secondary data are that the data are exhaustively
sampled over the modeling area and they need a calibration using the primary data because the secondary data
are surrogate variables somewhat relating to the reservoir properties being estimated. Calibration or integration
of the secondary data, however, is not easy because the available data are not only different in scales and types
but also they are redundant and the data redundancy is not explicitly quantified. These difficulties prevent us from
straightforwardly integrating the diverse data.

This paper presents a robust methodology and program for integrating multiple secondary data that have
potentially varying types, scales, nonlinear relation and redundancy. The proposed methodology is based on the
joint distribution modeling of the relevant variables in a nonparametric way. During the direct joint modeling,
nonlinear relations between the variables and data redundancy are implicitly accounted for. Besides, mixed types
of continuous and categorical variables can be naturally modeled by considering a categorical variable as
continuous variable with particular outcomes. The conditional probability or probability distribution of our
interest can be immediately derived if the joint probability distribution is modeled.

A nonparametric joint pdf modeling for data integration is not new (Duma and Fournier, 1988; Fournier
and Derain, 1995; Saggaf et al., 2003). Previous studies investigated the applicability of different nonparametric
modeling methods for reservoir property modeling using numerous seismic attributes. In this paper, we proposed
to evaluate marginal constraints of the modeled joint distribution. These constraints are the conditions that make
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the joint pdf legitimate. However, we demonstrated cases where the conditions are violated. To make a
legitimate joint pdf, we proposed a simple and robust marginal fitting algorithm. The effectiveness of the
proposed method is evaluated through the examples.

2. Method

Consider that X and Y;, i=1,...,m, are the random variables representing the primary and m secondary variables.
The random variable X can be continuous or categorical variable depending on what we want to estimate is
continuous or categorical reservoir property. Y; can be continuous or categorical variable depending on the type of
given secondary data as well. The essential idea of the method is to nonparametrically model the joint relation of
the primary and secondary variables. Once the multivariate distribution is modeled, the conditional probability or
conditional estimate of the primary variable can be immediately derived by Bayes law:
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The modeling of the multivariate distribution fyy(x,y4,...,ym) is based on the collocated samples of (X,Y,...,Y,) from
wells. The kernel density estimation is used for nonparametric modeling. fxy(x,y1,...,ym) can be modeled as
following by the kernel estimator (Cacoullos, 1966; Sain et al., 1992),
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where n is the number of collocated samples, (hy,...,h,) are kernel bandwidths for each of (X,Y4,...,Ym), K(:) is a
univariate Gaussian kernel function. Equation (2) is known as the product kernel estimator for the multivariate
modeling. The product kernel method is widely adopted in nonparametric multivariate pdf estimation (Scott,
1992). The choice of kernel size (hy,...,hy) is crucial to the final multivariate distribution. Theoretical suggestion
about the optimal kernel size is based on the number of samples, sample variance and dimension (Scott,1992):

h — O"_n—ﬂ(d+4) (3)

The program DatalntMDE has a flexibility that allows users to adjust the kernel size. The kernel bandwidth
becomes 1 if the given variable is categorical type.

Marginal Conditions of the Multivariate Distribution

The next step is for checking axioms of the modeled multivariate probability distributions: non-negative density
functions, closure condition and reproduction of lower order marginal distributions. The kernel density estimator
meets the first two axioms if the used kernel function K(-) follows K(x)=0 and JK(x)dx=1. The third condition,
reproduction of lower order marginal distribution, is a marginality condition stating that p-variate joint distribution
should reproduce p “variate distribution where p’< p and p’-variate distributions are the very well known. There
are two very reliable p@-variate lower order distributions in reservoir data integration: the univariate pdf of the
primary variable fx(x) and the multivariate pdf of the secondary variables fy(y,...,ym). The followings are possible
marginal conditions that the modeled multivariate distribution fyy(x,y1,...,¥m) must meet:
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The marginal condition in Eq (4) states that sum of the multivariate probability densities over the primary variable
should amount to fy(ys,...,ym). The second marginal condition in Eq. (5) states that sum of the probability densities
over the secondary variable should amount to fx(x). The global distribution of the primary variable fx(x) is achieved
using well samples. Representative global distribution can be obtained by applying the declustering or debiasing
technique if there is a bias in fy(x) caused by spatial clustering of well locations (Deutsch, 2002). The distribution of
secondary variables fy(ys,...,ym) is modeled using the large number of samples that are exhaustively sampled and
thus, the modeled fy(y4,...,ym) is very reliable.

Previous CCG papers (Hong and Deutsch, 2009; Hong, 2010) investigated the marginal constraints and
they showed these conditions are not always met. Figure 1 illustrates this case. The iterative algorithm to match
with the marginal conditions was proposed and its convergence was proved. This paper does not describe the
details.

3. Program Details

The program is implemented as the Fortran 90 and based on the GSLib type that reads parameter file and run the
executable file with the input parameter information. The following presents the details specific to input, output
files and user input parameters. Table 1 shows the required input data files for the program. All input and output
files are simplified Geo-EAS format constituting the header and data parts. Two input data files are needed for the
program: well data file and secondary data file. Well data must contain the primary and all of secondary data
samples and they should be identified by spatial coordinates. Secondary data file must be exhaustive type and
each secondary variable is separated by column in the same file. Table 2 lists the user input parameters. Number
of secondary variable is limited to the maximum five. Practically merging secondary variables more than 5 would
be recommended because a large number of secondary variables are unnecessarily redundant without a significant
improvement in the results. Type of the primary and secondary variable to be integrated should be specified;
integer number either 0 or 1 identifies continuous or categorical variable. The number of modeling grids (n,, ny, n,)
should be specified and total number of grids must be same as the number of data line in the secondary data file.
The representative global proportions should be input if the primary variable is categorical. The program models
the global distribution with declustering weights if the primary variable is continuous. The program calculates the
optimum kernel bandwidth using Eq. (3), however, users also can change the kernel size by kernel smoothing
factors in Table 2. Table 3 summarizes the output files from the program: multivariate pdf without marginal
correction, multivariate pdf with marginal correction, error report and result files. The initial and corrected pdf
files contain joint probability densities given the binned value of the variables. Error file is a summary of the
marginal errors at each iteration step. The final conditional probability (if primary variable is categorical) or
conditional estimate and estimation variance (if primary variable is continuous) deriving from the updated joint
distribution are saved in the result file. Some parameters other than user input are hard coded in the program.
Maximum number of secondary variables, maximum bin number and maximum categories are reasonably limited
as shown in Table 4. lteration number for marginal correction is set as 100. Practices showed that the marginal
errors were rapidly dropped during the first few iteration and the errors are usually converged into nearly zero %
before 100 iterations. Figure 2 illustrates the input, output files and parameter information required for the
program.

3. Examples
Figure 3 shows the simulated well data and secondary data for the example. Facies is sampled at four well
locations with 1m vertical interval. Secondary data are simulated at every 1mx1mx1lm over 30mx50mx20m.
Figure 4 visualizes the results from each step of the method: (1) preparing the marginal distributions, (2) modeling
the initial multivariate distributions, (3) updating the initial distributions by the marginal distributions, and (4)
deriving facies probability. The updated distributions became stable after four iterations for matching marginal
conditions. The final results are the facies probability cubes and they are shown in the bottom of Figure 7. The
parameter file used for this particular example is shown in Figure 5. The choice of kernel smoothing factor in Line
14 is more influential than other parameters; the first value is used for the modeling of fyy(x,y1,¥2,¥3), and the
second value is used for the modeling of fy(y1,y>,y3). Although the program calculates the optimal kernel size,
several attempts with +30% changes in the optimal values are recommended.

This paper focuses on introducing the MDE program. More elaborated examples can be seen in the
previous CCG papers.
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9. Conclusions

In reservoir modeling applications, diverse secondary data are frequently available for the modeling. The
secondary data are not in the unit of the primary variable being estimated and thus, they should be calibrated or
integrated with the primary variable. Challenges for integrating numerous data are in that they have different
types, data redundancy and complex joint relations. This paper presents a robust method for secondary data
integration and the related program. The proposed method is based on the nonparametric multivariate
probability distribution modeling. By directly modeling the joint distribution between diverse data, different types
are naturally accounted for and data redundancy is implicitly considered. The multivariate pdf modeling of the
diverse data is not new. This paper addressed some marginal conditions that the multivariate pdf must meet and
illustrated the case where the modeled multivariate distribution normally does not conform to the marginal
conditions. To make the multivariate distribution legitimate, this paper proposed an iterative marginal fitting
algorithm. The algorithm calculates the marginal differences and directly applies the differences to the initial joint
distribution resulting in an updated distribution. The marginal fitting procedure is repeated with respect to the
marginal distributions of the primary, and the secondary variables. The robustness of the iterative method is
theoretically proved and practically tested through examples.

The idea of the proposed method is implemented in DatalNtMDE based on GSLib type. Parameter files
used for the demonstrated examples were described in details. The proposed method assumes that the multiple
secondary data have the same grid size each other and they are homotopically sampled. The paper showed a
categorical variable modeling as the primary variable from integrating secondary data, but a continuous variable
modeling can be done as well by setting the parameter file appropriately.
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Tables
Table 1: Input files for the program

e The well data should contain collocated primary and
well data secondary data samples at well locations.

e This file should contain all of secondary variables being

integrated and they should be separated by column.
Secondary data e  The number of data line should be same as the number of
modeling grids.

Table 2: User input parameters

e  The number of secondary variable is limited to the maximum
Number of secondary 5

variables

e Integer number 1 indicates categorical type and O indicates
Type of primary variable continuous type

e Integer number 1 indicates categorical type and O indicates

Type of secondary continuous type

variable

Grids definition e Number of modeling grids in X,Y,Z directions is specified.

e Global proportions of categorical variable should be input and
they should be declustered.

Global proportion e If the primary variable is continuous then the program skips

reading this part.

e User can define the range of eligible data to be used by
Trimming limits setting trimming minimum and maximum

e The program calculates the optimal kernel bandwidths using
Equation (3)

e Smoothing factors are multiplied with the calculated kernel
bandwidths; factor being greater than 1 makes the distribution
smoother and vice versa.

e The program requires two smoothing factors. The first factor
is for the multivariate pdf modeling of the secondary
variables, and the second factor is for the multivariate pdf
modeling of the primary and secondary variables.

Kernel smoothing factor

e The level of binning continuous variable is defined by the
Bin number number of bins.

Table 3: Output files for the program

e The joint pdf of the primary and all of secondary variables is
saved in this file.

Initial MV pdf e The marginal constraints are not applied. User can compare

this file to the updated MV pdf file.
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Updated MV pdf

e The updated joint pdf is saved in this file.

Marginal errors

e Calculated marginal errors are reported in this file

e Conditional probability of facies or conditional mean and
variances are extracted from the updated joint pdf. This

Result results are in (X,Y,Z) space and thus, user can directly import
this file in any 3D visualization software.
Table 4: Hard coded parameters of the program

Maximum bin number 100
Maximum number of secondary variable 5
Maximum iteration number 100
Maximum number of categories 6
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Primary

@ collocated samples
— Modeled joint pdf
- - Calculated marginal pdfs from the joint pdf

- Reference marginal pdfs

Secondary

Figure 1: Schematic illustration for the inconsistency between the reproduced marginal distributions and the

reference marginal distributions.

1. Input files

1.1 well data
1.2 secondary data

2. User parameters

2.1 Number of secondary variables
2.2 Type of primary variable

2.3 Type of secondary variable

2.4 Grids definition

2.5 Global mean or proportions

2.6 Trimming limit

2.7 Kernel smoothing factor

2.8 Bin number

DataIntMDE. exe

9. Ouput files
9.1 Initial MV pdf
9.2 Updated MV pdf
9.3 Marginal errors
9.4 result

Figure 2: Input files, output files and user input parameters for the program.
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Figure 3: Simulated well data and two continuous secondary data.
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Model the marginal pdf:
1) pdf of primary variable
2) pdf of secondary variables

Model the initial MV pdf

Update the initial MV pdf
under the marginal pdf

Derive conditional probability
or pdf given the all of
secondary values
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Figure 4: Procedure of the proposed method (diagrams in the left) and results obtained from each process (in the

right).
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Parameters for Example 1
kkhkkkkhkkkkhkkhkhkkhkkhkhkkkhkhkkkhkkkk*%

-Number of Sec Variables

-Primary variable type;

O-cont, 1l-cat

-Number of categories

-Code if categorical var is specified
-Declustered proportions

-Secondary data

-Column for

each secondary variable

-Type of each secondary var;l-cat,0-cont
-Grids definition

-Well data
-Column for

-Trimming min,

-Bin number

sec, pri and declustering weights
trimming max

-Smoothing factor for kernel window
-MV pdf without marg correct

-MV pdf with marg correct

-Error vs iteration

-Final result

Figure 5: Parameter file for the example.
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