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A Short Note on the Generalized Spherical Variogram Model
Jared L. Deutsch

The spherical model is a widely used variogram model, however the equations for the model are typically
implemented for lower dimensions only (1-3) and are not commonly considered in higher dimensions. Extending
this model to higher dimensions has applications in modern high dimensional geostatistical techniques. A
generalized equation for the spherical variogram is presented and the properties of higher order models are
described. A subroutine (nsSph) is presented to calculate the n-spherical variogram for n<5. The widely used cova3
subroutine is also modified to compute n-spherical variogram values for n<5.

1. Spherical Variogram

Variogram models defined by the intersection of geometric bodies were first introduced by Matérn (1960). The
spherical variogram has since become a widely used variogram model. The standardized spherical model is
defined as one minus the volume of intersection of 2 spheres normalized by the volume of the spheres. This is
shown schematically in Figure 1 and mathematically in Equation (1). The spherical variogram model in 3
dimensions is well known. The equation for a variogram with range a (sphere diameter) for lag h is given by
Equation (2).
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This variogram is a conditional negative definite model and hence valid in a dimensional space less than or equal to
the dimension of the variogram (Armstrong and Diamond, 1984; Christakos, 1984; Pyrcz and Deutsch, 2006). This
three dimensional model is valid in three, two and one dimensions. To use this model in n-dimensions, an n-D (or
greater) model must be used. Modern geostatistical techniques such as kriging with locally varying anisotropy
(Boisvert, 2010) require high dimensional models limiting use of the spherical variogram model.

2. Generalized n-Spherical Variogram
The n-spherical variogram model can be derived using Equation (1) and n-spherical volume formulas. The
equations of two n-spheres of radius r with centers separated by a distance h are given by (3) and (4).
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The n-spheres intersect on the hyperplane given by the y/’s at x = h/2. For the spherical variogram, this is a circle of
intersection on the y-z plane. For the equal sized n-spheres, the volume of intersection is then equal to twice the
volume of the spherical caps bounded by the hyperplane at x = h/2. The height of this cap is given by Equation (5)
and shown schematically in Figure 2.

h"=r-h/2 (5)
The formula for the volume of an n-sphere and associated spherical cap with height h” are known (Shetty and

Ahuja, 2008) and given by Equations (6) and (7) where T is the gamma function given by Equation (8).
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Given that the volume of intersection is equal to twice the volume of a spherical cap and using sphere diameter a
instead of radius r the general formula for the n-spherical variogram can be calculated, Equation (9).
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By simplifying this general equation, the triangular, circular, spherical and n-spherical variogram equations can be
calculated. The results for the 1-D to 5-D cases are shown below in Table 1.

Table 1: Simplified equations for n-spherical variogram models.

Dimension Equation
1 Triangular Sph, (h) =h/a
2 Circular Sph, (h)=1+(2/z)(h/a)y1-(h/a)’ —(2/ z)cos™ (h/a)
3 Spherical Sph( )=3/ (h/a)—1/2(h/a)3

4 | 4-sSpherical Sph4(h)=1—(l/67z)(12cos (h/a)—8sin(2cos™ (h/a))-+sin(4cos™ (h/a)))

5 | 5-Spherical Sph; (h)=15/8(h/a)-5 (h/a) + 3/8(h/a)5

For h>a: Sph,(h)=1

It is noteworthy that the odd n-D variograms have relatively simple equations governing them while the even n-D
variograms have complicated equations involving the arccosine term in the integral from the general equation.
This is because of the sin"(t) term in the integral which is complicated to integrate for even n and simple for odd n.
Sample plots of variograms that would be obtained using these equations are shown in Figure 3. Note that initial
slope at h=0 increases with increasing dimensions for the cases shown. Because of this it is not a simple matter to
use the same range for a higher order variogram model. All of the variogram models shown in Figure 3 are range
normalized (ie: a=1). To calculate the intercept with the sill using the initial slope, Equation (10) is applied. The
intercept values using the initial slope at are listed in Table 2.
-1
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Table 2: List of sill intercept values using the initial slope at h=0 as a function of dimension.
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. . ) dSph
Dimension Sill Intercept q (h/a) .
1 Triangular 1 1
2 Circular n/4 ~0.785 4/t~ 1.273
3 Spherical 2/3~0.667 3/2~1.500
4 4-Spherical 3m/16 ~ 0.589 16/3m~ 1.698
5 5-Spherical 8/15~0.533 15/8 ~ 1.875
Exponential oo 3.000

Table 2 shows that the amount which the slope increases with increasing dimension decreases with higher
dimensions; so while the difference between triangular and circular variogram models is very large, the difference
between the 4-spherical and 5-spherical models is considerably smaller.

3. Computational Aspects

A Fortran subroutine (Figure 4) was written to calculate the n-Spherical variogram values using the equations
detailed here. For a lag h greater than range a, a value 1.0 is returned automatically. This could be changed
depending on the use of the subroutine. The commonly used cova3 subroutine was also modified to compute
the n-spherical variogram values for up to 5 dimensions (see the electronic files accompanying this paper). This
subroutine can replace the currently used version of cova3 with no loss of functionality or change in input
parameters.

The effects of using a higher dimensional spherical variogram model with the same range as a lower rank
spherical variogram were tested using the familiar 2DWel IData.dat. For simplicity, all variograms were
generated using the same range (see the accompanying electronic files for complete parameters). Sample
variograms are plotted in Figure 5. The variograms do not differ significantly, although the high dimensional
spherical variograms are “bowed-out” as was previously illustrated. These variograms were used to krige normal-
score transformed porosity values from the 2DWellData. Plots of the kriged data are compiled in Figure 6. All of
the n-spherical variograms produced very similar kriging outputs.

As the number of dimensions increases, the equation for the spherical variogram becomes increasingly
complex requiring greater computation times (see Table 1). To calculate the equation for a n-spherical variogram
at an arbitrary n, Equation (9) has to be solved. Numerical integration techniques are only effective at low n as
sin”(t) in the integral domain converges to a sharp peak for which ordinary numerical integration techniques are
not effective, so solutions to the hypergeometric function should be used. Equation (9) can be expanded to
Equation (11) where ,F; is the hypergeometric function; however, this still requires solving the gamma function
and hypergeometric function for large values of n. For this reason it is recommended that for large values of n,
variograms should be modeled using the exponential variogram, which is valid for any n.

_2(h/a) F(n/2+1) (1 1-n 3, 2]
Sph, (h) = Iz F((n+1)/2)2Fl ;(h/a) (12)
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4. Conclusions
The general equation for a n-Spherical variogram was derived. The Fortran subroutine, cova3 was coded to
include spherical variograms less than or equal to five dimensions.
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Figure 1: Schematic cross section of the intersection of two spheres for constructing spherical variogram model.
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Figure 2: Schematic of height of spherical cap.
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Figure 3: Range normalized variogram models showing the effect of increasing dimension.
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subroutine nsph(n,a,h,sph)

Calculate the n-Spherical Variog
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ram

Calculate the n-spherical variogram up to an
The formulas are hard-coded so does not requ
function. On error returns sph = -1.0

***Note that for h > a function returns sph

Parameters for nsph

-number of dimensions

d including 5 dimensions
ire use of the gamma

1.0 exactly***

oo

sph

-variogram range (sphere diameter)
-lag value (sphere center seperation distance)
-calculated spherical variogram value

parameter(P1=3.14159265)
integer n
real a,h,sph,ha
ha = h/a
if (h .ge. a) then
sph = 1.0
return
end if

select case (n)
case (1)
sph = ha
case (2)
sph = 1.+2_/P1*ha*SQRT(1.-ha*ha)-2
case (3)

./P1*ACOS (ha)

C

sph = 1.
ase (4)
sph = 1.

5*ha-0.5*ha*ha*ha

-1./6./P1*(12.*ACOS(ha)-8*SIN(2.*ACOS(ha))
+SIN(4.*ACOS(ha)))

case (5)
sph = 1.
case default
sph = -1.0
end select

875*ha-1.25*ha*ha*ha+0.375

return
end

*ha*ha*ha*ha*ha

Figure 4: Fortran subroutine for calculated n-Spherical variogram values up to and including n=5.
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Figure 5: Variograms models for 2DWellData.dat, all with identical ranges.
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Figure 6: Kriged 2DWellData using the variograms shown in Figure 5. All spherical models give similar results.
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