Paper 409, CCG Annual Report 12, 2010 (© 2010)

Parallel Programming

J.B. Boisvert

Parallel programming with Open MP requires an additional four lines of code and parallel do loops can be
implemented to significantly reduce the run times of GSLIB style programs. Rather than rewrite all the code written
at the CCG to take advantage of parallel programming, a wrapper was written that calls an executable multiple
times in parallel. This allows for the parallelization of any GSLIB style program with very little modification to the
original code. In addition to presenting this 'script like* wrapper, developing parallel do loops are discussed in the
Microsoft Visual Studio 2008 environment.

1. Introduction

Geostatistical programs are naturally amenable to parallel programming. Within virtually every geostatistical
algorithm there are possibilities for significant speed gains if the programmer is fluent in parallel programming.
Any independent calculation can be run in parallel; this could represent multiple realizations, the same algorithm
applied to multiple variables, kriging various grid blocks in parallel, etc. In each one of these examples, the
realizations/variable/grid locations could be run on a separate processor. Clearly, the ability to program in parallel
would significantly reduce run times for typical geostatistical algorithms.

Programming in parallel is very easy. There are an additional four lines of code required to identify blocks
of code that are written in parallel and Open MP automatically distributes the indices of the loop to the available
processors, consider the simple loop in Figure 1.

The !Somp parallel NUM_THREADS(nthr) command indicates a section of code that is to be run in parallel
with the number of threads to use specified by nthr; alternatively the command could simply be ISomp parallel
and the number of processors would be selected automatically. The block of code that is run in parallel must be

ended by the ISomp end parallel statement. A parallel do loop is indicated by the /Somp do and !Somp end do

statements. In this simple example, the program exefl is run on multiple processors using the system call
sys_call_out. A more typical example would be the generation of independent realizations in parallel (Figure 2).

In this example a subroutine “sgs” is called nnn times in parallel. The array sgs_reals is filled by multiple
processors according to different INPUTS for each realization, such as a different random number for each call. In
addition to the syntax indicated in Figure 2 there are compiler flags that must be set to indicate that the compiler
should compile in parallel, these flags are /Qopenmp /threads /dbglibs /fpp. If you are not compiling from the
command line where you would use these flags, the options can be found in the “Project Properties” menu, then
Configuration Properties/Fortran/Languages/Process OpenMP Directives and Configuration Properties/ Fortran/

Languages/ Debug Multithreaded and Configuration Properties/ Fortran/ Preprocessor/ Preprocess Source File

(see Figure 3 and Figure 4). The runtime library option should also be set to Multithreaded in Configuration
Properties/Fortran/Libraries/Runtime Library. If you would like your application to run on other computers, you

also have to indicate that the OMP libraries are static incase the target computer does not have the same dll’s
installed. Set the flag /Qopenmp-link:static which is not an option in Microsoft Visual studio, thus it must be added
as an “Additioal Option” in Configuration Properties/Fortran/Libraries/Command Line. This location also indicates

all of the flags that you have selected, to check your configuration, the configurations for the compiled
make_parallel program are given in Figure 5.

The difficult part of programming in parallel is ensuring that everything within the parallel do loop is
independent (note there are more advanced programming techniques that consider calculations that are not
independent, but they will not be considered here). In a typical GSLIB implementation of sequential Gaussian
simulation (SGS) there are search parameters, covariance lookup tables, data arrays, temporary arrays, etc. that

409-1

Paper 409, CCG Annual Report 12, 2010 (© 2010)

are used and written to during the construction of each realization. Each realization in SGS is mathematically
independent but the implementation/code may not be independent.

At this point the generation of parallel do loops with Open MP (OMP) in the Microsoft Visual Studio 2008
environment has been covered. It is this authors’ hope that future CCG code will take advantage of the simplicity
of the OMP language and be incorporated in a meaningful way; however, it would not be efficient to rewrite all
CCG code to date to incorporate parallel programming. Rather, a single program make_parallel has been
written that can call any executable multiple times in parallel. Consider running SGS, each realization is
independent and could be run by independent executables executing simultaneously. For 10 realizations, 10
separate SGS.exe executions would generate the realizations. make_paral lel is essentially a script that calls
the same executable multiple times with a slightly different parameter file. In the case of SGS the parameter file
for each SGS.exe run would be identical save for the random number that would be incremented for each call.

2. Make_parallel.exe Program

A wrapper/script like parallel program was written as an alternative to modifying all previous GSLIB
source code to consider parallel loops. Make_parallel is a program which does nothing but call another “.exe”
program in parallel (this program will be referred to as the “main program”). The necessary inputs to
make_parallel are the program name, number of processors to use, number of times to call the main
program, and an output option (Figure 6).

Line 1: Set the number of threads to use. If set ==0, the program will detect the number of threads on the
computer and use all of them. If set ==-1 the program will detect the number of threads on the computer and use
nthreads-1. This is to allow one free processor for the user to continue to use the computer while make_parallel is
running.

Line 2: Name of the main program to be called. This program must take its parameter file name as a
command line argument rather than as an input from the screen (see below for more details on how to perform
this modification).

Line 3: Name of the parameter file for the main program in Line 2.

Line 4: in the parameter file (Line 3) the text string from this line should appear (i.e. RAND). The
Make_parallel program will call the main program (Line 2) a number of times while replacing the RAND string
with incremented values.

Line 5: Number of times to call the main program. For efficiency this should be the same as the number
of processors from Line 1; however, this is not a requirement. The second number is the starting value to
substitute in the parameter file (Line 3) for the input character string (Line 4).

Line 6: a temporary directory that will be created (and then deleted) that will store all of the intermediate
files.

Line 7: For each output file that the main program (Line 2) generates, a duplicate must be made to ensure
that multiple processors do not write to the same file.

Line 8-10: name of the output files that will be duplicated. These names must be the same as the name in
the main program parameter file (Line 3).

Line 11: Once the main program has been run multiple times there will be multiple output files (one for
each main program call). This option will merge them as columns or append the files. Note that the length of each
file must be the same. Selecting the option to “not merge” is the most efficient (see below).

Line 12: Option to delete the temp folder. Note that if you select the option to not merge the files, all the
output files will be generated in the temp folder and should not be deleted.

The make_parallel program can be used to call any GSLIB style program with very minimal
modifications to the original code. The only change to the original code is the manner in which the main program
source code reads in the parameter file name. The system call (Figure 1) requires the name of the parameter file

409-2

Paper 409, CCG Annual Report 12, 2010 (© 2010)

to be a command line argument. The majority of GSLIB programs accept this type of input argument; however, the
modifications are minor and are shown in Figure 7.

3. Example Call for SGSIM.exe and Time Trials
SGSIM.exe will be used to demonstrate the speedup of the make_paral lel program. The parameters used for
the trial run are:

e Windows 7 with Intel(R) Xeon(R) CPU X5677@3.47GHz

e 8 processors (dual quad core)

e 96 realizations (multiple of 8, 6, 4, 2 for running multiple processors)

e 150x150x150 grid (3.375M cells)

e 25random data points

e Max of 10 original data and 20 previously simulated nodes

e Multigridding option (3 grid searches)

e 505050 search radius

The parameter files for SGSIM and Make_paral lel are shown in Figure 8 and Figure 9 respectively. Note
that in this example for each call to SGSIM a different random number will be used. The 10 random numbers
69756, 69757, 69758, 69759, 69760, 69761, 69762, 69763, 69764 and 69765, as indicated in Figure 9, will replace
the RAND string (Figure 8). Make_parallel will call SGSIM a total of 10 times, each time generating 10
realizations with different initial random number seeds. The output will be ten sgs_dbg.out, sgs.out and sgsim.trn
files in the temporary directory “temp_dir798”.

Figure 10 shows the run times for the scenario described above. Note that there are two options with the
program, if the outputs need not be merged into a single file (no merging output) then the speedup realized is very
close to the ideal speedup. ldeal speed up is determined by reducing the single processor time of 72.1min by the
number of processors (ideal time for 8 processors is 72.1/8). The additional time for the “merging output” option
comes from reading all output files and writing a single output with all realizations. The reading and writing speed
is dependent on the disk read/write speed rather than the number of processors and requires approximately
12min for this example regardless of how many processors are used.

4. Conclusions

For non-expert FORTRAN programmers the idea of programming in parallel seems daunting when most are simply
trying to master do loops, if statements and other basic programming tools. Once a programmer reaches a certain
level they begin to try to make programs run better. With the reduction in price of multiple processor personal
computers, parallel programing is a logical option for most geostatistical algorithms as they are naturally
parallelizable. This paper discussed how openMP can be used to create simple independent parallel do loops. The
modification to the original code is the addition of four lines of code (one above/below the do loop and one
above/below the parallelized section of code). There are a number of complier flags that have to be set, otherwise
parallel programming is identical to serial programming.

For those programmers or practitioners who do not wish to modify existing code or do not have the tools
to develop the code as discussed in this paper, a program make_paral lel has been created to parallelize any
GSLIB program that can accept a command line argument. The drawback to using a program like
make_paral lel is that the file manipulation to generate a single output file is costly.

409-3

Paper 409, CCG Annual Report 12, 2010 (© 2010)

Figures

lfomp parallel NTH THREADZ (nthr)
print %, ' We are using',nthr,' threadiz)'
Viomp do
do i=1,nZparalize
command = trim(adjustliexefl))//' '//trim{adjustl(par_list (i)}
sys_call out = systemdgd (conhtoatd)
end do
'$omp end do
fomp end parallel

Figure 1: Example parallel code to write a parallel “do loop” to use the system call.

'5omp parallel

1Somp do
do i=1,nnn
write(*,*) 'running in parallel, realization: ' P
call sgs(sgs_xeals(:,1i), INPUTS)
end do

15omp end do
1Somp end parallel

Figure 2: Simple parallel code to build sgs realizations.

W make_paral - Micrasoft Visual Studio =N h =
File Edit View Build Debug Tools Test Window Help
Add New Item... Ctrl+Shift+2 b Debug ~ Winiz ~ | [# loc MR e e R o
Add Existing Iz, Shiftsdleed | A ab Qb

filesF30] glal [

teheck Set as StartUp Project lisble and hawve been asked for k=
(5] Solution 'make_paral’ {1 praject)

= @ make_paral
. nthr == -1] nthr = OMP_GET_NUM_THREADS ()-1 !ishould probably leave one core free D Header Files

New Folder » X | Solution Bxplorer - Solutio. + & X

. £ (3 Resource Files
Ygomp end parallsl files.F90
glabal.Fo0
& (3 Source Files
i [#] make_paral.fan

tnow just call the progrem a few times with different par files ...

‘xmq\nnl‘xlnam\dxa JﬁNﬁSE.il

(=T

t$omp parallel NUM_THREADS (nthr)

print ¥, ' U= are using',nthr,’' thread(s)'
tsomp do
do i=1,nZparalize
corwand = trimiadiustliexefl))//' '//rrim{adiustl (par_lisc(i))) /7' » '//trim({adjuscl (cewp_dir))//'/screen_oucp

sys_call_out = systemqgq |command) 4] i, +

end do q:!Solutmn Explorer [Class View

t$omp end do

Froperties 1 x
t$omp end parallel
EY
call idate(today) ! today(l)=day, (2)=month, (3)=year LS
call itime (nowl ! mowil)=heur, (2)=minute, (3)=s3ccond
write (66, 1000) todayi2), today(l), today(3), now
<[I v
Output - x
Show autput fram: SR e =x|E
«)
[Eror List| 5 Output |
Readly Ln 84 Caoll chi NS

Figure 3: Location of project properties.

409-4

Paper 409, CCG Annual Report 12, 2010 (© 2010)

rnake_paral Praperty Pages @

Configuration: | Active(Debug) * | Platform: |Active(ifind2) '] ’ Configuration Manager...]
4 Configuration Properties =« Source File Format Use File Extension
General T Fixed Form Line Length 72 Columins
Debugaing Pad Fixed Forrm Source Lines MNao
4 Fortran Enable <ernate PARARMETER Syntax Yes
al Enable FORTRAN 66 Semantics Mo
Optiggation Commpile Lines With D in Calurmn 1 Mo
"3 Process OpenbdP Directives Generate Parallel Code [/Qopenmp)
s5ar =
Code Generation
Language
Compatibility
Diagnostics
Data

< FIanleoint

Pernal Procedures —

| Output Files
Run-time

Libraries »
. Source File Format
Command Line
linker = Specifies the forrat of Fortran source code; the default is based on the file extension, (ffree, fixed)
4| 1 +

QK l ’ Cancel Apply

Figure 4: Location of the /Qopenmp flag.

I make_paral Property Page:

Configuration: ’Active(ReIease) ¥ | Platform: |Active(Win32) V] [Cenfiguration Manager...]

Debugging - All Options:

Preprocessor /nologe fassumebuffered_io /fpp /Qopenmp /module:"Releasel\" fobject:"Release\\" /libs:static »
Code Generation fthreads /c

Language
Compatibility
Diagnostics
Data

Floating Paint
External Procedures|
Output Files
Run-time

Libraries
Command Line
Linker
General Additional Options:
Inpst
Manifest File
Debug
System

Ontimizatinn
n

Figure 5: Make_parallel.exe configuration. All the flags are indicated under "All Options™.

409-5

Paramsters for make paral

START
Linel: 1
Line2: sgsim_conmand line. exs
Line3d: sgsim_paral .par
Lined: RAND
LinetS: 10 69756
Linef: tenp_dir?98
Line?: 3
Lined: sg=.out
Line9: =gs_dbg. out
Lineld: =sgsim. trn
Linell: -
Linelz: 1

Paper 409, CCG Annual Report 12, 2010 (© 2010)

—number of threads to use (==0 to detect awailable, ==-1 to detect nthreads and then use nthresds-1
—exscutable, this must be in the current directory, MUST HAVE PAR FILE A5 & COMMAND LINE ARGUMENT
—par file to duplicate

—character string to find in the par file and increment

—number of walues to try. starting walue

—temp directory to make all temp files, CAREFUL ALL FILES AND SUBFOLDERS HERE WILL BE DELETED
—number of output files, need to duplicate so each process does not write to the same file
—output file

—output file

—output file

—«0 do not merge files, 0 - append the first output file.
—delete the temp folder when done (0 =yes. 1=no)

l=merge the first output file as columnns

Figure 6: Make_parallel.exe parameter file.

Getarg command to
read in parameter
file name

subroutine readparm (MAXNOD, MAXCXY,MAXCTX,MAXCTY, MAXCTZ, MAXSEX,

MAXSEY, MAXSBZ)

3

000 n

¥

1]

ut parameters and data are read in

checking

Initialization and Read Parameters

from their files. Some guick

is performed and the statistics of all the wariables

c being considered are w tten to standard output.
c
c
use m=flib
nuse geostat
include 'sgsim.inc’
real war (500)
real*d p,acorni, cp,oldecp, W
character transf1*512, smthfl*512, tmpfl*512,datafl#512, oucfl®512,
dbgf1*512, lvmf1#512, str 512
logical testfl, testind
[+
c Note SION number:
c

write(*,9999)
23923 format (/' SGS5IM Version:

Get the

VERSION

'L E5.3/)

name of the parameter file - try the default name if no input:

do i=1,512

str({i:i) = ' '

end do

call getarg(l,str)

if(scr(l:1).2gq." ')then
write(*,*) 'Which parameter file do you want to use?'
read (¥,"'(a)') str

end if

Figure 7: Original sgsim.for GSLIB code.

409-6

Paper 409, CCG Annual Report 12, 2010 (© 2010)

Paramseters for SG5IM

START OF PARAMETERS:
data_file=s-data.dat
1 2 0 0

-1.0 1.0e21

1

=g=im. trn

0

histsmth. out
1 2

0.0 1.0

1 0.0
1 1.0

1
=g=_dbg.out
=g=.out

10

150 .5 1

150 .5 1

150 .5 1

RAND

0 10
20

1

1 3

0

50 50 &0
0.0 0.0 0.0
101 101 101

0 0.60 1.0

. .~datarsydata . dat

4

1 0.1

1 0.9 00 0.0 0.0
50 E0 50

Figure 8: Parameters for SGSIM example.

Paramneters for make paral
START

2 —nunber of threads to u=ze (==0 to detect awvailable.
=g=in_comnmand line. exe —executable.

=g=in_paral par

RAND —character string to find in the par file and increment

10 69756 —nunber of waluss to try, starting wvalue

temp_dir7?98 —temnp directory to make all temp files.

3 —nunber of cutput files, need to duplicate =o each process does not write to the =zame file
=g=.out —output file

=g=_dbg.out —output file

=g=im. trn —output file

0 —<0 do not merge files.

1 —delete the temp folder when done (0 =ye=. l=no)

—file with data

—columns for X.Y.Z vr, wt. sec.var.
—trimming limits

—transform the data (0O=no. l=yes)
—file for output trans table
—con=ider ref. dist (O=no. l=yes=)
—file with ref. dist distribution
—columns for wr and wt
—zmnin,znax(tail extrapolation)

—lower tail option. parameter

—upper tail option. paramster
—debugging level: 0,1.2.3

—output file

—output file

—nunber of realizations to generate
—n¥E,®Ehn, = Zsiz

—ny.y¥nn,ysiz

—nZ,Zmn,zs1z

—randomn nunber seed

—min and max original data for =im
—nunber of simulated nodes to use
—as=sign data to nodes (O=no. l=ves)
—multiple grid search (0=no. l=yes=s).numn
—maxinum data per octant {(J=not used)
—maxinum search radii (hmax hmin.vert)
—angles for search ellipsoid

—=ize of covariance lookup table
—ktype: 0=5K, 1=0K,k 2=LVHM, 3=EXDR. 4=COLC
—file with LVH, EXDE., or COLC wvariable
—column for secondary wariable

—-nst. nugget effect
—it.cc,angl,ang?, angl

—a_hmax. a_hmin, a_vert

CAREFUL ALL FILES AND SUBFOLDERS HERE WILL BE DELETED

==-1 to detect nthreads and then use nthreads-1
this must be in the current directory. MUST HAVE PAR FILE AS & COMMAND LINE ARGUMENT
—par file to duplicate

0 — append the first output file, l=merge the first output file as columns

Figure 9: Parameters for Make_paral lel example.

409-7

Paper 409, CCG Annual Report 12, 2010 (© 2010)

60

Single Processor Time = 72.1min

Time
(min)

Ideal ¥
Speedup
0 T T T

2 4 6 8 10

Number of Processors

Figure 10: Time trials running SGSIM.exe to generate 96 realizations.

409-8

